MODELING URBAN DYNAMICS USING RANDOM FOREST: IMPLEMENTING ROC AND TOC FOR MODEL EVALUATION
暂无分享,去创建一个
Hossein Shafizadeh-Moghadam | Mohammad Ahmadlou | Amin Tayyebi | M. R. Delavar | Hossein Shafizadeh-Moghadam | M. Ahmadlou | M. Delavar | A. Tayyebi
[1] Bryan C. Pijanowski,et al. Modeling multiple land use changes using ANN, CART and MARS: Comparing tradeoffs in goodness of fit and explanatory power of data mining tools , 2014, Int. J. Appl. Earth Obs. Geoinformation.
[2] Mahesh Pal,et al. Random forest classifier for remote sensing classification , 2005 .
[3] B. Pijanowski,et al. Using neural networks and GIS to forecast land use changes: a Land Transformation Model , 2002 .
[4] Mohammad Javad Yazdanpanah,et al. URBAN EXPANSION SIMULATION USING GEOSPATIAL INFORMATION SYSTEM AND ARTIFICIAL NEURAL NETWORKS , 2009 .
[5] Hossein Shafizadeh-Moghadam,et al. Performance analysis of radial basis function networks and multi-layer perceptron networks in modeling urban change: a case study , 2015, Int. J. Geogr. Inf. Sci..
[6] R. Gil Pontius,et al. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA , 2001 .
[7] Jonah Gamba,et al. Simulating Urban Growth Using a Random Forest-Cellular Automata (RF-CA) Model , 2015, ISPRS Int. J. Geo Inf..
[8] M. Pal,et al. Random forests for land cover classification , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).
[9] Bryan C. Pijanowski,et al. Comparing three global parametric and local non-parametric models to simulate land use change in diverse areas of the world , 2014, Environ. Model. Softw..
[10] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[11] Simon D. Jones,et al. The Performance of Random Forests in an Operational Setting for Large Area Sclerophyll Forest Classification , 2013, Remote. Sens..
[12] Zhiyong Hu,et al. Modeling urban growth in Atlanta using logistic regression , 2007, Comput. Environ. Urban Syst..
[13] Robert Gilmore Pontius,et al. The total operating characteristic to measure diagnostic ability for multiple thresholds , 2014, Int. J. Geogr. Inf. Sci..
[14] Bernard De Baets,et al. Random Forests as a tool for estimating uncertainty at pixel-level in SAR image classification , 2012, Int. J. Appl. Earth Obs. Geoinformation.
[15] Margaret G. Schmidt,et al. Predictive soil parent material mapping at a regional-scale: a Random Forest approach. , 2014 .
[16] Lien Poelmans,et al. Complexity and performance of urban expansion models , 2010, Comput. Environ. Urban Syst..