Reduction of mNAT1/hNAT2 Contributes to Cerebral Endothelial Necroptosis and Aβ Accumulation in Alzheimer's Disease.

[1]  Junying Yuan,et al.  Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target , 2020, Nature Reviews Drug Discovery.

[2]  Adam P. Silverman,et al.  Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys , 2020, Science Translational Medicine.

[3]  Adam P. Silverman,et al.  Brain delivery and activity of a lysosomal enzyme using a blood-brain barrier transport vehicle in mice , 2020, Science Translational Medicine.

[4]  A. Fagan,et al.  APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline , 2020, Nature.

[5]  W. Banks,et al.  ApoE and cerebral insulin: Trafficking, receptors, and resistance , 2020, Neurobiology of Disease.

[6]  B. de Strooper,et al.  Necrosome complex detected in granulovacuolar degeneration is associated with neuronal loss in Alzheimer’s disease , 2019, Acta Neuropathologica.

[7]  John F. Ouyang,et al.  A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation , 2019, Nature Neuroscience.

[8]  Bradley T. Hyman,et al.  Beyond the neuron–cellular interactions early in Alzheimer disease pathogenesis , 2019, Nature Reviews Neuroscience.

[9]  Eric E. Smith,et al.  Vascular dysfunction—The disregarded partner of Alzheimer's disease , 2019, Alzheimer's & Dementia.

[10]  Patricia Greninger,et al.  BRAF and AXL oncogenes drive RIPK3 expression loss in cancer , 2018, PLoS biology.

[11]  Kevin R. Moon,et al.  Recovering Gene Interactions from Single-Cell Data Using Data Diffusion , 2018, Cell.

[12]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[13]  K. Devraj,et al.  An In Vivo Blood-brain Barrier Permeability Assay in Mice Using Fluorescently Labeled Tracers. , 2018, Journal of visualized experiments : JoVE.

[14]  Q. Wells,et al.  A Metabolic Basis for Endothelial-to-Mesenchymal Transition. , 2018, Molecular cell.

[15]  Koji Ando,et al.  A molecular atlas of cell types and zonation in the brain vasculature , 2018, Nature.

[16]  Berislav V. Zlokovic,et al.  Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders , 2018, Nature Reviews Neurology.

[17]  K. Petersen,et al.  Mechanism by which arylamine N-acetyltransferase 1 ablation causes insulin resistance in mice , 2017, Proceedings of the National Academy of Sciences.

[18]  G. Bu,et al.  Apolipoprotein E4 Impairs Neuronal Insulin Signaling by Trapping Insulin Receptor in the Endosomes , 2017, Neuron.

[19]  Junying Yuan,et al.  ABIN-1 Regulates RIPK1 Activation by Bridging M1 ubiquitination with K63 Deubiquitination in TNF-RSC , 2017, Nature Cell Biology.

[20]  C. Kahn,et al.  Endothelial insulin receptors differentially control insulin signaling kinetics in peripheral tissues and brain of mice , 2017, Proceedings of the National Academy of Sciences.

[21]  J. Levin,et al.  RIPK1 mediates a disease-associated microglial response in Alzheimer’s disease , 2017, Proceedings of the National Academy of Sciences.

[22]  Aviv Regev,et al.  Massively-parallel single nucleus RNA-seq with DroNc-seq , 2017, Nature Methods.

[23]  Winnie S. Liang,et al.  Necroptosis activation in Alzheimer's disease , 2017, Nature Neuroscience.

[24]  Junying Yuan,et al.  Single-Cell RNA Sequencing: Unraveling the Brain One Cell at a Time. , 2017, Trends in molecular medicine.

[25]  Marco Prinz,et al.  The role of peripheral immune cells in the CNS in steady state and disease , 2017, Nature Neuroscience.

[26]  J. Knowles,et al.  Nat1 Deficiency Is Associated with Mitochondrial Dysfunction and Exercise Intolerance in Mice. , 2016, Cell reports.

[27]  Norbert Schuff,et al.  Early role of vascular dysregulation on late-onset Alzheimer's disease based on multifactorial data-driven analysis , 2016, Nature Communications.

[28]  P. Verstreken,et al.  Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification , 2016, Nature Communications.

[29]  M. Pasparakis,et al.  A brain microvasculature endothelial cell‐specific viral vector with the potential to treat neurovascular and neurological diseases , 2016, EMBO molecular medicine.

[30]  D. Green,et al.  Programmed necrosis in inflammation: Toward identification of the effector molecules , 2016, Science.

[31]  B. Zlokovic,et al.  Accelerated pericyte degeneration and blood–brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease , 2016, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[32]  Jinfeng Liu,et al.  Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation , 2015, Nature.

[33]  M. Cousin,et al.  Mitochondrial Calcium Uptake Modulates Synaptic Vesicle Endocytosis in Central Nerve Terminals , 2015, The Journal of Biological Chemistry.

[34]  T. Bayer,et al.  Endothelial LRP1 transports amyloid-β(1-42) across the blood-brain barrier. , 2015, The Journal of clinical investigation.

[35]  M. Cohen-Salmon,et al.  Purification of Mouse Brain Vessels. , 2015, Journal of visualized experiments : JoVE.

[36]  G. Biessels,et al.  Hippocampal insulin resistance and cognitive dysfunction , 2015, Nature Reviews Neuroscience.

[37]  Alejandro F Frangi,et al.  Vascular dysfunction in the pathogenesis of Alzheimer's disease — A review of endothelium-mediated mechanisms and ensuing vicious circles , 2015, Neurobiology of Disease.

[38]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[39]  J. Schneider,et al.  Central role for PICALM in amyloid–β blood–brain barrier transcytosis and clearance , 2015, Nature Neuroscience.

[40]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[41]  A. Burlingame,et al.  The ubiquitin-modifying enzyme A20 restricts the ubiquitination of RIPK3 and protects cells from necroptosis , 2015, Nature Immunology.

[42]  T. Assimes,et al.  Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene , 2015 .

[43]  Junying Yuan,et al.  Activation of necroptosis in multiple sclerosis. , 2015, Cell reports.

[44]  Jesse D. Sengillo,et al.  GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration , 2015, Nature Neuroscience.

[45]  D. Granger,et al.  Blood cells and endothelial barrier function , 2015, Tissue barriers.

[46]  Bin Zhang,et al.  PhosphoSitePlus, 2014: mutations, PTMs and recalibrations , 2014, Nucleic Acids Res..

[47]  M. Pasparakis,et al.  Cutting Edge: RIPK1 Kinase Inactive Mice Are Viable and Protected from TNF-Induced Necroptosis In Vivo , 2014, The Journal of Immunology.

[48]  Sung Hoon Baik,et al.  Migration of neutrophils targeting amyloid plaques in Alzheimer's disease mouse model , 2014, Neurobiology of Aging.

[49]  P. Kharchenko,et al.  Bayesian approach to single-cell differential expression analysis , 2014, Nature Methods.

[50]  Yoav Mayshar,et al.  Mfsd2a is critical for the formation and function of the blood–brain barrier , 2014, Nature.

[51]  S. Itohara,et al.  Single App knock-in mouse models of Alzheimer's disease , 2014, Nature Neuroscience.

[52]  L. Komuves,et al.  Activity of Protein Kinase RIPK3 Determines Whether Cells Die by Necroptosis or Apoptosis , 2014, Science.

[53]  B. Zlokovic,et al.  Pericyte loss influences Alzheimer-like neurodegeneration in mice , 2013, Nature Communications.

[54]  C. Iadecola,et al.  The Pathobiology of Vascular Dementia , 2013, Neuron.

[55]  Åsa K. Björklund,et al.  Smart-seq2 for sensitive full-length transcriptome profiling in single cells , 2013, Nature Methods.

[56]  Y. Xiong,et al.  Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. , 2013, Molecular cell.

[57]  C. Mueller,et al.  Production and Discovery of Novel Recombinant Adeno‐Associated Viral Vectors , 2012, Current protocols in microbiology.

[58]  B. K. Ormerod,et al.  Enzymatic digestion improves the purity of harvested cerebral microvessels , 2012, Journal of Neuroscience Methods.

[59]  Berislav V. Zlokovic,et al.  Apolipoprotein E controls cerebrovascular integrity via cyclophilin A , 2012, Nature.

[60]  Xiaodong Wang,et al.  Mixed Lineage Kinase Domain-like Protein Mediates Necrosis Signaling Downstream of RIP3 Kinase , 2012, Cell.

[61]  Jason W. Locasale,et al.  Metabolic Regulation of Protein N-Alpha-Acetylation by Bcl-xL Promotes Cell Survival , 2011, Cell.

[62]  F. Dequiedt,et al.  Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase , 2011, Nature.

[63]  Anton P. Porsteinsson,et al.  Meta-Analysis of Alzheimer's Disease Risk with Obesity, Diabetes, and Related Disorders , 2010, Biological Psychiatry.

[64]  H. Ryoo,et al.  FGF2-activated ERK Mitogen-activated Protein Kinase Enhances Runx2 Acetylation and Stabilization* , 2009, The Journal of Biological Chemistry.

[65]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[66]  S. Estus,et al.  LRP1 shedding in human brain: roles of ADAM10 and ADAM17 , 2009, Molecular Neurodegeneration.

[67]  R. Deane,et al.  Clearance of amyloid-β peptide across the blood-brain barrier: Implication for therapies in Alzheimer’s disease , 2009 .

[68]  Alexei Degterev,et al.  Identification of a Molecular Signaling Network that Regulates a Cellular Necrotic Cell Death Pathway , 2008, Cell.

[69]  Katie Hamm,et al.  apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. , 2008, The Journal of clinical investigation.

[70]  S. Mahrus,et al.  Tags for labeling protein N-termini with subtiligase for proteomics. , 2008, Bioorganic & medicinal chemistry letters.

[71]  Alexei Degterev,et al.  Identification of RIP1 kinase as a specific cellular target of necrostatins. , 2008, Nature chemical biology.

[72]  G. Lubec,et al.  Barnes maze, a useful task to assess spatial reference memory in the mice , 2007 .

[73]  A. Goate,et al.  Clearance of amyloid-β by circulating lipoprotein receptors , 2007, Nature Medicine.

[74]  R. Martins,et al.  Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease , 2006, Molecular Psychiatry.

[75]  M. Haan Therapy Insight: type 2 diabetes mellitus and the risk of late-onset Alzheimer's disease , 2006, Nature Clinical Practice Neurology.

[76]  Don L. Armstrong,et al.  Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease , 2005, Nature Medicine.

[77]  Peter J. Lenting,et al.  LRP/Amyloid β-Peptide Interaction Mediates Differential Brain Efflux of Aβ Isoforms , 2004, Neuron.

[78]  Ling Xie,et al.  Alzheimer's β-Amyloid Peptides Compete for Insulin Binding to the Insulin Receptor , 2002, The Journal of Neuroscience.

[79]  D. Holtzman,et al.  Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. , 2000, The Journal of clinical investigation.

[80]  L. Eliasson,et al.  Rapid ATP‐Dependent Priming of Secretory Granules Precedes Ca2+ ‐Induced Exocytosis in Mouse Pancreatic B‐Cells , 1997, The Journal of physiology.

[81]  A. Paetau,et al.  Endothelial ICAM-1 expression associated with inflammatory cell response in human ischemic stroke. , 1996, Circulation.

[82]  A. Campos-Neto,et al.  Chronic inflammation caused by lymphotoxin is lymphoid neogenesis , 1996, The Journal of experimental medicine.

[83]  S. Thibodeau,et al.  Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. , 1996, The New England journal of medicine.

[84]  Muneesh Tewari,et al.  Yama/CPP32β, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase , 1995, Cell.

[85]  S. Schmid,et al.  ATP is required for receptor-mediated endocytosis in intact cells , 1990, The Journal of cell biology.

[86]  H. Plattner,et al.  ATP keeps exocytosis sites in a primed state but is not required for membrane fusion: an analysis with Paramecium cells in vivo and in vitro , 1986, The Journal of cell biology.

[87]  R. Milner,et al.  Isolation and culture of primary mouse brain endothelial cells. , 2014, Methods in molecular biology.

[88]  W. Brown A review of string vessels or collapsed, empty basement membrane tubes. , 2010, Journal of Alzheimer's disease : JAD.