Diversity and Evolution of Body Size in Fishes

[1]  Martin D. Brazeau The Rise of Fishes: 500 Million Years of Evolution , 2011 .

[2]  R. Reis,et al.  Major Biogeographic and Phylogenetic Patterns , 2011 .

[3]  R. Reis,et al.  Species Richness and Cladal Diversity , 2011 .

[4]  J. Albert Historical Biogeography of Neotropical Freshwater Fishes , 2011 .

[5]  J. Hutchings,et al.  Trophic level scales positively with body size in fishes , 2011 .

[6]  C. Burrow,et al.  Fossils, histology, and phylogeny: Why conodonts are not vertebrates , 2010 .

[7]  J. Diniz‐Filho,et al.  Deviations from predictions of the metabolic theory of ecology can be explained by violations of assumptions. , 2010, Ecology.

[8]  John Alroy,et al.  Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification , 2010 .

[9]  Gerald R. Smith,et al.  Species diversity gradients in relation to geological history in North American freshwater fishes , 2010 .

[10]  R. Barton,et al.  Phylogeny and metabolic scaling in mammals. , 2010, Ecology.

[11]  Chris Carbone,et al.  Why are metabolic scaling exponents so controversial? Quantifying variance and testing hypotheses. , 2010, Ecology letters.

[12]  N. Sanders,et al.  Metabolic theory and elevational diversity of vertebrate ectotherms. , 2010, Ecology.

[13]  D. S. Glazier A unifying explanation for diverse metabolic scaling in animals and plants , 2010, Biological reviews of the Cambridge Philosophical Society.

[14]  Joshua M. Stuart,et al.  Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. , 2009, The Journal of heredity.

[15]  F. Bokma,et al.  Do Speciation Rates Drive Rates of Body Size Evolution in Mammals? , 2009, The American Naturalist.

[16]  Kevin J. Gaston,et al.  Macrophysiology: A Conceptual Reunification , 2009, The American Naturalist.

[17]  D. S. Glazier Ontogenetic body-mass scaling of resting metabolic rate covaries with species-specific metabolic level and body size in spiders and snakes. , 2009, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[18]  J. Albert,et al.  Fossils provide better estimates of ancestral body size than do extant taxa in fishes , 2009 .

[19]  R. G. Davies,et al.  Kent Academic Repository Versions of Research Enquiries Citation for Published Version Document Version Global Biogeography and Ecology of Body Size in Birds , 2022 .

[20]  J. Ammirati,et al.  Phylogenetic relationships in Cortinarius, section Calochroi, inferred from nuclear DNA sequences , 2009, BMC Evolutionary Biology.

[21]  S. Redner,et al.  How Many Species Have Mass M? , 2008, The American Naturalist.

[22]  Aaron Clauset,et al.  The Evolution and Distribution of Species Body Size , 2008, Science.

[23]  D. S. Glazier Effects of metabolic level on the body size scaling of metabolic rate in birds and mammals , 2008, Proceedings of the Royal Society B: Biological Sciences.

[24]  Pierre Pica,et al.  Log or Linear? Distinct Intuitions of the Number Scale in Western and Amazonian Indigene Cultures , 2008, Science.

[25]  G. Nilsson,et al.  Does size matter for hypoxia tolerance in fish? , 2008, Biological reviews of the Cambridge Philosophical Society.

[26]  Philip M. Novack-Gottshall,et al.  Scale-dependence of Cope's rule in body size evolution of Paleozoic brachiopods , 2008, Proceedings of the National Academy of Sciences.

[27]  A. P. Allen,et al.  Energetic constraints on an early developmental stage: a comparative view , 2008, Biology Letters.

[28]  M. Hardman,et al.  The relative importance of body size and paleoclimatic change as explanatory variables influencing lineage diversification rate: an evolutionary analysis of bullhead catfishes (Siluriformes: Ictaluridae). , 2008, Systematic biology.

[29]  Julian D. Olden,et al.  Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world's freshwater and marine fishes. , 2007 .

[30]  J. Diniz‐Filho,et al.  Partitioning phylogenetic and adaptive components of the geographical body-size pattern of New World birds , 2007 .

[31]  John J. Wiens,et al.  Global Patterns of Diversification and Species Richness in Amphibians , 2007, The American Naturalist.

[32]  J. Pérez-Claros,et al.  Comment on “Morphological Evolution Is Accelerated among Island Mammals” , 2007, PLoS biology.

[33]  A. P. Allen,et al.  The mechanistic basis of the metabolic theory of ecology , 2007 .

[34]  M. Kottelat,et al.  Evolution of miniaturization and the phylogenetic position of Paedocypris, comprising the world's smallest vertebrate , 2007, BMC Evolutionary Biology.

[35]  M. Gillman EVOLUTIONARY DYNAMICS OF VERTEBRATE BODY MASS RANGE , 2007, Evolution; international journal of organic evolution.

[36]  Mark G Thomas,et al.  A new time-scale for ray-finned fish evolution , 2007, Proceedings of the Royal Society B: Biological Sciences.

[37]  M. Friedman,et al.  A NEW ACTINOPTERYGIAN FROM THE FAMENNIAN OF EAST GREENLAND AND THE INTERRELATIONSHIPS OF DEVONIAN RAY-FINNED FISHES , 2006, Journal of Paleontology.

[38]  James H. Brown,et al.  Inaugural Article: Life-history evolution under a production constraint , 2006 .

[39]  Michael I. Coates,et al.  A lamprey from the Devonian period of South Africa , 2006, Nature.

[40]  M. Benton,et al.  Paleontological evidence to date the tree of life. , 2006, Molecular biology and evolution.

[41]  J. W. Valentine,et al.  Out of the Tropics: Evolutionary Dynamics of the Latitudinal Diversity Gradient , 2006, Science.

[42]  M. Pagel,et al.  Large Punctuational Contribution of Speciation to Evolutionary Divergence at the Molecular Level , 2006, Science.

[43]  V. Millien Morphological Evolution Is Accelerated among Island Mammals , 2006, PLoS biology.

[44]  Joshua S Madin,et al.  Statistical Independence of Escalatory Ecological Trends in Phanerozoic Marine Invertebrates , 2006, Science.

[45]  David Griffiths Pattern and process in the ecological biogeography of European freshwater fish. , 2006, The Journal of animal ecology.

[46]  P. Janvier,et al.  Lamprey-like gills in a gnathostome-related Devonian jawless vertebrate , 2006, Nature.

[47]  D. S. Glazier,et al.  The 3/4-Power Law Is Not Universal: Evolution of Isometric, Ontogenetic Metabolic Scaling in Pelagic Animals , 2006 .

[48]  C. Underwood Diversification of the Neoselachii (Chondrichthyes) during the Jurassic and Cretaceous , 2006, Paleobiology.

[49]  J. Sepkoski,et al.  Estimating paleodiversities: a test of the taxic and phylogenetic methods , 2005, Paleobiology.

[50]  C. Graham,et al.  Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology , 2005 .

[51]  Bai-lian Li,et al.  Gigantism, temperature and metabolic rate in terrestrial poikilotherms , 2005, Proceedings of the Royal Society B: Biological Sciences.

[52]  D. S. Glazier Beyond the ‘3/4‐power law’: variation in the intra‐and interspecific scaling of metabolic rate in animals , 2005, Biological reviews of the Cambridge Philosophical Society.

[53]  D. Bolnick,et al.  FOSSIL CALIBRATIONS AND MOLECULAR DIVERGENCE TIME ESTIMATES IN CENTRARCHID FISHES (TELEOSTEI: CENTRARCHIDAE) , 2005, Evolution; international journal of organic evolution.

[54]  R. Twitchett,et al.  Early Triassic Ophiuroids: Their Paleoecology, Taphonomy, and Distribution , 2005 .

[55]  James H. Brown,et al.  Linking the global carbon cycle to individual metabolism , 2005 .

[56]  J. Reynolds,et al.  Life history and ecological correlates of extinction risk in European freshwater fishes , 2005 .

[57]  P. Donoghue,et al.  BASAL TISSUE STRUCTURE IN THE EARLIEST EUCONODONTS: TESTING HYPOTHESES OF DEVELOPMENTAL PLASTICITY IN EUCONODONT PHYLOGENY , 2005 .

[58]  James H. Brown,et al.  The rate of DNA evolution: effects of body size and temperature on the molecular clock. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  M. Donoghue,et al.  Historical biogeography, ecology and species richness. , 2004, Trends in ecology & evolution.

[60]  G. Lei,et al.  Patterns of diversity, altitudinal range and body size among freshwater fishes in the Yangtze River basin, China , 2004 .

[61]  Kate E. Jones,et al.  Similarities in body size distributions of small-bodied flying vertebrates , 2004 .

[62]  M. Laurin The evolution of body size, Cope's rule and the origin of amniotes. , 2004, Systematic biology.

[63]  James H. Brown,et al.  Toward a metabolic theory of ecology , 2004 .

[64]  J. Kingsolver,et al.  INDIVIDUAL‐LEVEL SELECTION AS A CAUSE OF COPE'S RULE OF PHYLETIC SIZE INCREASE , 2004, Evolution; international journal of organic evolution.

[65]  J. L. Gittleman,et al.  The life history legacy of evolutionary body size change in carnivores , 2003, Journal of evolutionary biology.

[66]  R. D. Guthrie Rapid body size decline in Alaskan Pleistocene horses before extinction , 2003, Nature.

[67]  Jon Mallatt,et al.  Fossil sister group of craniates: Predicted and found , 2003, Journal of morphology.

[68]  J. Knouft CONVERGENCE, DIVERGENCE, AND THE EFFECT OF CONGENERS ON BODY SIZE RATIOS IN STREAM FISHES , 2003, Evolution; international journal of organic evolution.

[69]  P. Janvier Vertebrate characters and the Cambrian vertebrates , 2003 .

[70]  J. Albert,et al.  Oxygen consumption in weakly electric Neotropical fishes , 2003, Oecologia.

[71]  S. Turner,et al.  Global Ordovician vertebrate biogeography , 2003 .

[72]  T. Garland,et al.  TESTING FOR PHYLOGENETIC SIGNAL IN COMPARATIVE DATA: BEHAVIORAL TRAITS ARE MORE LABILE , 2003, Evolution; international journal of organic evolution.

[73]  L. Page,et al.  The Evolution of Body Size in Extant Groups of North American Freshwater Fishes: Speciation, Size Distributions, and Cope’s Rule , 2003, The American Naturalist.

[74]  Geoffrey B. West,et al.  Physiology (communication arising): Why does metabolic rate scale with body size? , 2003, Nature.

[75]  S. Morris,et al.  Head and backbone of the Early Cambrian vertebrate Haikouichthys , 2003, Nature.

[76]  P. Donoghue,et al.  Origin and early evolution of vertebrate skeletonization , 2002, Microscopy research and technique.

[77]  J. Sepkoski,et al.  A compendium of fossil marine animal genera , 2002 .

[78]  James H. Brown,et al.  Patterns of diversity, depth range and body size among pelagic fishes along a gradient of depth , 2002 .

[79]  Raul K. Suarez,et al.  Allometric cascade as a unifying principle of body mass effects on metabolism , 2002, Nature.

[80]  S. Peters,et al.  Biodiversity in the Phanerozoic: a reinterpretation , 2001, Paleobiology.

[81]  H. Sheets,et al.  Uncorrelated change produces the apparent dependence of evolutionary rate on interval , 2001, Paleobiology.

[82]  P. D. Polly Paleontology and the Comparative Method: Ancestral Node Reconstructions versus Observed Node Values , 2001, The American Naturalist.

[83]  Philip M. Novack-Gottshall,et al.  Effects of sampling standardization on estimates of Phanerozoic marine diversification , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[84]  L. Prendini,et al.  Species or supraspecific taxa as terminals in cladistic analysis? Groundplans versus exemplars revisited. , 2001, Systematic biology.

[85]  Lloyd Demetrius,et al.  Directionality theory and the evolution of body size , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[86]  W. Blanckenhorn The Evolution of Body Size: What Keeps Organisms Small? , 2000, The Quarterly Review of Biology.

[87]  Andrew H. Knoll,et al.  Directionality in the history of life: diffusion from the left wall or repeated scaling of the right? , 2000, Paleobiology.

[88]  D. Jablonski,et al.  Invariant size-frequency distributions along a latitudinal gradient in marine bivalves. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[89]  K. Gaston,et al.  Pattern and Process in Macroecology , 2000 .

[90]  K. Dietze A Revision Of Paramblypterid And Amblypterid Actinopterygians From Upper Carboniferous–Lower Permian Lacustrine Deposits Of Central Europe , 2000 .

[91]  D. Ackerly TAXON SAMPLING, CORRELATED EVOLUTION, AND INDEPENDENT CONTRASTS , 2000, Evolution; international journal of organic evolution.

[92]  M. Ayres,et al.  Jensen's inequality predicts effects of environmental variation. , 1999, Trends in ecology & evolution.

[93]  A. Clarke,et al.  Scaling of metabolic rate with body mass and temperature in teleost fish , 1999 .

[94]  M. Pagel The Maximum Likelihood Approach to Reconstructing Ancestral Character States of Discrete Characters on Phylogenies , 1999 .

[95]  J. da Silva,et al.  Diversity in Relation to Body Size in Mammals: A Comparative Study , 1999, The American Naturalist.

[96]  S. Dehaene,et al.  The Number Sense: How the Mind Creates Mathematics. , 1998 .

[97]  B. A. Maurer The evolution of body size in birds. I. Evidence for non-random diversification , 1998, Evolutionary Ecology.

[98]  P D Polly,et al.  Cope's Rule , 1998, Science.

[99]  Arnold I. Miller,et al.  Biotic transitions in global marine diversity. , 1998, Science.

[100]  J. Coddington,et al.  Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea) , 1998 .

[101]  J. Alroy Cope's rule and the dynamics of body mass evolution in North American fossil mammals. , 1998, Science.

[102]  K. Gaston Species-range size distributions: products of speciation, extinction and transformation , 1998 .

[103]  W. J. Matthews,et al.  Patterns in Freshwater Fish Ecology , 1998, Springer US.

[104]  J. Losos,et al.  TESTING FOR UNEQUAL AMOUNTS OF EVOLUTION IN A CONTINUOUS CHARACTER ON DIFFERENT BRANCHES OF A PHYLOGENETIC TREE USING LINEAR AND SQUARED‐CHANGE PARSIMONY: AN EXAMPLE USING LESSER ANTILLEAN ANOLIS LIZARDS , 1997, Evolution; international journal of organic evolution.

[105]  S. Morand,et al.  Parasite body size distributions: interpreting patterns of skewness. , 1997, International journal for parasitology.

[106]  G. Brown,et al.  Cellular energy utilization and molecular origin of standard metabolic rate in mammals. , 1997, Physiological reviews.

[107]  L. Demetrius,et al.  Directionality principles in thermodynamics and evolution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[108]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[109]  F. H. Rodd,et al.  Evaluation of the Rate of Evolution in Natural Populations of Guppies (Poecilia reticulata) , 1997, Science.

[110]  W. Wieser Energetics of fish larvae, the smallest vertebrates. , 1995, Acta physiologica Scandinavica.

[111]  W. Parker,et al.  Causality and Cope's Rule: evidence from the planktonic foraminifera , 1995, Journal of Paleontology.

[112]  K. Gaston,et al.  Birds, body size and the threat of extinction , 1995 .

[113]  D. McShea MECHANISMS OF LARGE‐SCALE EVOLUTIONARY TRENDS , 1994, Evolution; international journal of organic evolution.

[114]  P. Gingerich,et al.  Rates of evolution in the dentition of early Eocene Cantius: comparison of size and shape , 1994, Paleobiology.

[115]  T. Fenchel There are more small than large species , 1993 .

[116]  J. Damuth Cope's rule, the island rule and the scaling of mammalian population density , 1993, Nature.

[117]  M. Taper,et al.  Evolution of Body Size: Consequences of an Energetic Definition of Fitness , 1993, The American Naturalist.

[118]  James H. Brown,et al.  THE MICRO AND MACRO IN BODY SIZE EVOLUTION , 1992, Evolution; international journal of organic evolution.

[119]  T. Garland,et al.  Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts , 1992 .

[120]  P. Forey,et al.  Diversity of extinct and living actinistian fishes (Sarcopterygii) , 1991, Environmental Biology of Fishes.

[121]  W. Maddison Squared-Change Parsimony Reconstructions of Ancestral States for Continuous-Valued Characters on a Phylogenetic Tree , 1991 .

[122]  John O. Reiss The Meaning of Developmental Time: A Metric for Comparative Embryology , 1989, The American Naturalist.

[123]  Robert M. May How Many Species Are There on Earth? , 1988, Science.

[124]  Richard P. Vari,et al.  Miniaturization in South American freshwater fishes; an overview and discussion , 1988 .

[125]  R. Wagner,et al.  Why are There so Many Kinds of Passerine Birds? Because They Are Small. A Reply to Raikow , 1988 .

[126]  Brian A. Maurer,et al.  Body size, ecological dominance and Cope's rule , 1986, Nature.

[127]  P. Koch,et al.  Clinal geographic variation in mammals: implications for the study of chronoclines , 1986, Paleobiology.

[128]  F. Hainsworth Scaling: why is animal size so important? , 1985 .

[129]  Mark S. Boyce,et al.  Seasonality, Fasting Endurance, and Body Size in Mammals , 1985, The American Naturalist.

[130]  P. Gingerich Smooth curve of evolutionary rate: a psychological and mathematical artifact. , 1984, Science.

[131]  P. Gingerich Rates of Evolution: Effects of Time and Temporal Scaling , 1983, Science.

[132]  P. Janvier,et al.  Hardistiella montanensis n. gen. et sp. (Petromyzontida) from the Lower Carboniferous of Montana, with remarks on the affinities of the lampreys , 1983 .

[133]  Gerald R. Smith Late Cenozoic Freshwater Fishes of North America , 1981 .

[134]  Karl W. Kaufmann,et al.  Fitting and using growth curves , 1981, Oecologia.

[135]  I. Hayami Notes on the rates and patterns of size change in evolution , 1978, Paleobiology.

[136]  S. Stanley,et al.  AN EXPLANATION FOR COPE'S RULE , 1973, Evolution; international journal of organic evolution.

[137]  G. E. Hutchinson,et al.  A Theoretical Ecological Model of Size Distributions Among Species of Animals , 1959, The American Naturalist.

[138]  N D NEWELL,et al.  PHYLETIC SIZE INCREASE, AN IMPORTANT TREND ILLUSTRATED BY FOSSIL INVERTEBRATES , 1949, Evolution; international journal of organic evolution.

[139]  J. Haldane SUGGESTIONS AS TO QUANTITATIVE MEASUREMENT OF RATES OF EVOLUTION , 1949, Evolution; international journal of organic evolution.

[140]  F. W. Preston The Commonness, And Rarity, of Species , 1948 .

[141]  M. Kleiber Body size and metabolic rate. , 1947, Physiological reviews.

[142]  Michael C. Whitlock,et al.  American Naturalist , 1867, The Chicago medical journal.

[143]  E. Wiley,et al.  A teleost classification based on monophyletic groups , 2010 .

[144]  J. de la Fuente,et al.  BMC Evolutionary Biology BioMed Central , 2009 .

[145]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[146]  M. I. C. Fls Actinopterygians from the Namurian of Bearsden, Scotland, with comments on early actinopterygian neurocrania , 2008 .

[147]  Arnold I. Miller,et al.  BODY SIZE ESTIMATES FROM THE LITERATURE: UTILITY AND POTENTIAL FOR MACROEVOLUTIONARY STUDIES , 2007 .

[148]  D. Raffaelli,et al.  The metabolic theory of ecology and the role of body size in marine and freshwater ecosystems , 2007 .

[149]  D. Raffaelli,et al.  Body Size: The Structure and Function of Aquatic Ecosystems: The Structure and Function of Aquatic Ecosystems , 2007 .

[150]  James H. Brown,et al.  Body Size: The metabolic theory of ecology and the role of body size in marine and freshwater ecosystems , 2007 .

[151]  M. Benton,et al.  The evolution of large size: how does Cope's Rule work? , 2005, Trends in ecology & evolution.

[152]  R. Glenn Northcutt The new head hypothesis revisited. , 2005, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[153]  SHUDegan A paleontological perspective of vertebrate origin , 2003 .

[154]  James H. Brown,et al.  The Physiological Ecology of Vertebrates: A View from Energetics , 2002 .

[155]  R. Lund The new actinopterygian order Guildayichthyiformes from the lower Carboniferous of Montana (USA) , 2000 .

[156]  P. Munday,et al.  The ecological implications of small body size among coral-reef fishes , 1998 .

[157]  D. Jablonski Body-size evolution in Cretaceous molluscs and the status of Cope's rule , 1997, Nature.

[158]  Arnold I. Miller,et al.  Dissecting global diversity patterns: examples from the Ordovician Radiation. , 1997, Annual review of ecology and systematics.

[159]  R. Cloutier Morphologie et variations du toit crânien du Dipneuste Scaumenacia curta (Whiteaves) (Sarcopterygii), du Dévonien supérieur du Québec , 1997 .

[160]  G. Arratia Basal teleosts and teleostean phylogeny , 1997 .

[161]  M. C. D. Pinna,et al.  Chapter 7 – Teleostean Monophyly , 1996 .

[162]  G. D. Johnson,et al.  Chapter 12 – Relationships of Lower Euteleostean Fishes , 1996 .

[163]  P. Ahlberg,et al.  Chapter 17 – Morphology, Characters, and the Interrelationships of Basal Sarcopterygians , 1996 .

[164]  Philip D. Gingerich,et al.  Quantification and comparison of evolutionary rates , 1993 .

[165]  K. Sebens The Ecology of Indeterminate Growth in Animals , 1987 .

[166]  K. Schmidt-Nielsen,et al.  Scaling, why is animal size so important? , 1984 .

[167]  J. Sepkoski,et al.  A factor analytic description of the Phanerozoic marine fossil record , 1981, Paleobiology.

[168]  M. Kleiber Body size and metabolism , 1932 .

[169]  M. Rubner,et al.  Ueber den Einfluss der Körpergrösse auf Stoff- und Kraftwechsel , 1883 .

[170]  James H. Brown,et al.  UNM Digital Repository UNM Digital Repository Effects of size and temperature on metabolic rate Effects of size and temperature on metabolic rate , 2022 .