Why the association log-likelihood distance should be used for measurement-to-track association
暂无分享,去创建一个
[1] P. Mahalanobis. On the generalized distance in statistics , 1936 .
[2] Dirk Stüker,et al. Heterogene Sensordatenfusion zur robusten Objektverfolgung im automobilen Straßenverkehr , 2003 .
[3] Yaakov Bar-Shalom,et al. A note on "book review tracking and data fusion: A handbook of algorithms" [Authors' reply] , 2013 .
[4] J. Munkres. ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .
[5] Richard Altendorfer,et al. A Complete Derivation Of The Association Log-Likelihood Distance For Multi-Object Tracking , 2015, ArXiv.
[6] Javier González,et al. An Alternative to the Mahalanobis Distance for Determining Optimal Correspondences in Data Association , 2012, IEEE Transactions on Robotics.
[7] Samuel S. Blackman,et al. Multiple-Target Tracking with Radar Applications , 1986 .
[8] Ingemar J. Cox,et al. A review of statistical data association techniques for motion correspondence , 1993, International Journal of Computer Vision.
[9] R. Mahler. Multitarget Bayes filtering via first-order multitarget moments , 2003 .
[10] Christoph Stiller,et al. Multisensor obstacle detection and tracking , 2000, Image Vis. Comput..
[11] A. Broggi,et al. Pedestrian localization and tracking system with Kalman filtering , 2004, IEEE Intelligent Vehicles Symposium, 2004.
[12] X. R. Li,et al. Survey of maneuvering target tracking. Part I. Dynamic models , 2003 .
[13] Y. Bar-Shalom. On the track-to-track correlation problem , 1981 .
[14] D. Bertsekas. The auction algorithm: A distributed relaxation method for the assignment problem , 1988 .
[15] Klaus C. J. Dietmayer,et al. Heterogeneous Fusion of Video, LIDAR and ESP Data for Automotive ACC Vehicle Tracking , 2006, 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.