Design and Analysis of a Robust and Efficient Block Cipher using Cellular Automata

Cellular automaton (CA) has been shown to be capable of generating complex and random patterns out of simple rules. There has been constant efforts of applying CA to develop ciphers, but the attempts have not been successful. This paper describes how repeated application of simple CA transforms may be used to achieve confusion and diffusion, needed in block ciphers. The components have been evaluated for their robustness against conventional cryptanalysis and the results have been found to be comparable to standards. Finally, the parts are assembled in an unconventional way to construct a self-invertible CA based round, which is resistant against linear and differential cryptanalysis and yet can be efficiently implemented