Reed-muller codes achieve capacity on the quantum erasure channel
暂无分享,去创建一个
A. Robert Calderbank | Santhosh Kumar | Henry D. Pfister | A. Calderbank | H. Pfister | Santhosh Kumar
[1] Saikat Guha,et al. Polar Codes for Classical-Quantum Channels , 2011, IEEE Transactions on Information Theory.
[2] Erdal Arikan,et al. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.
[3] Shu Lin,et al. Error control coding : fundamentals and applications , 1983 .
[4] Michael Lentmaier,et al. Iterative Decoding Threshold Analysis for LDPC Convolutional Codes , 2010, IEEE Transactions on Information Theory.
[5] A. Steane. Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[6] R. Schumann. Quantum Information Theory , 2000, quant-ph/0010060.
[7] P. Shor,et al. QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.
[8] Nicolas Macris,et al. Threshold Saturation for Spatially Coupled LDPC and LDGM Codes on BMS Channels , 2013, IEEE Transactions on Information Theory.
[9] Tetsunao Matsuta,et al. 国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .
[10] Shor,et al. Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[11] P. Shor,et al. Quantum Error-Correcting Codes Need Not Completely Reveal the Error Syndrome , 1996, quant-ph/9604006.
[12] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .
[13] M. Wilde. Quantum Information Theory: Noisy Quantum Shannon Theory , 2013 .
[14] Gilles Zémor,et al. Upper bounds on the rate of low density stabilizer codes for the quantum erasure channel , 2012, Quantum Inf. Comput..
[15] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[16] Rüdiger L. Urbanke,et al. Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC , 2010, IEEE Transactions on Information Theory.
[17] Ekert,et al. Quantum Error Correction for Communication. , 1996 .
[18] Santhosh Kumar,et al. Reed–Muller Codes Achieve Capacity on Erasure Channels , 2015, IEEE Transactions on Information Theory.
[19] N. J. A. Sloane,et al. Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.
[20] Daniel A. Spielman,et al. Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.
[21] C. H. Bennett,et al. Capacities of Quantum Erasure Channels , 1997, quant-ph/9701015.
[22] Saikat Guha,et al. Polar Codes for Degradable Quantum Channels , 2011, IEEE Transactions on Information Theory.