Reed-muller codes achieve capacity on the quantum erasure channel

The quantum erasure channel is the simplest example of a quantum communication channel and its information capacity is known precisely. The subclass of quantum error-correcting codes called stabilizer codes is known to contain capacity-achieving sequences for the quantum erasure channel, but no efficient method is known to construct these sequences. In this article, we explicitly describe a capacity-achieving code sequence for the quantum erasure channel. In particular, we show that Calderbank-Shor-Steane (CSS) stabilizer codes constructed from self-orthogonal binary linear codes are capacity-achieving on the quantum erasure channel if the binary linear codes are capacity-achieving on the binary erasure channel. Recently, Reed-Muller codes were shown to achieve capacity on classical erasure channels. Using this, we show that CSS codes constructed from binary Reed-Muller codes achieve the capacity of the quantum erasure channel. The capacity-achieving nature of these CSS codes is also explained from a GF(4) perspective.

[1]  Saikat Guha,et al.  Polar Codes for Classical-Quantum Channels , 2011, IEEE Transactions on Information Theory.

[2]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[3]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[4]  Michael Lentmaier,et al.  Iterative Decoding Threshold Analysis for LDPC Convolutional Codes , 2010, IEEE Transactions on Information Theory.

[5]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[7]  P. Shor,et al.  QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.

[8]  Nicolas Macris,et al.  Threshold Saturation for Spatially Coupled LDPC and LDGM Codes on BMS Channels , 2013, IEEE Transactions on Information Theory.

[9]  Tetsunao Matsuta,et al.  国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .

[10]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[11]  P. Shor,et al.  Quantum Error-Correcting Codes Need Not Completely Reveal the Error Syndrome , 1996, quant-ph/9604006.

[12]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[13]  M. Wilde Quantum Information Theory: Noisy Quantum Shannon Theory , 2013 .

[14]  Gilles Zémor,et al.  Upper bounds on the rate of low density stabilizer codes for the quantum erasure channel , 2012, Quantum Inf. Comput..

[15]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[16]  Rüdiger L. Urbanke,et al.  Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC , 2010, IEEE Transactions on Information Theory.

[17]  Ekert,et al.  Quantum Error Correction for Communication. , 1996 .

[18]  Santhosh Kumar,et al.  Reed–Muller Codes Achieve Capacity on Erasure Channels , 2015, IEEE Transactions on Information Theory.

[19]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[20]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[21]  C. H. Bennett,et al.  Capacities of Quantum Erasure Channels , 1997, quant-ph/9701015.

[22]  Saikat Guha,et al.  Polar Codes for Degradable Quantum Channels , 2011, IEEE Transactions on Information Theory.