A Real-World Experiments Setup for Investigations of the Problem of Visual Landmarks Selection for Mobile Robots

We consider a real-world experiments setup for investigations of the problem of visual landmarks selection for wheeled and tracked robots navigation. In particular, we consider visual landmarks selection in case of one-dimensional panorama.

[1]  R. Pfeifer,et al.  A mobile robot employing insect strategies for navigation , 2000, Robotics Auton. Syst..

[2]  Darius Burschka,et al.  Optimal landmark configuration for vision-based control of mobile robots , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[3]  Ehud Rivlin,et al.  Landmark Selection for Task-Oriented Navigation , 2007, IEEE Trans. Robotics.

[4]  Lutz Frommberger,et al.  Representing and Selecting Landmarks in Autonomous Learning of Robot Navigation , 2008, ICIRA.

[5]  Anna Gorbenko,et al.  The Problem of Sensor Placement , 2012 .

[6]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[7]  Anna Gorbenko,et al.  The problem of placement of visual landmarks , 2011 .

[8]  Thomas Röfer,et al.  Controlling a Wheelchair with Image-based Homing , 1997 .

[9]  Ralf Möller,et al.  Insect visual homing strategies in a robot with analog processing , 2000, Biological Cybernetics.

[10]  T. S. Collett,et al.  Landmark maps for honeybees , 1987, Biological Cybernetics.

[11]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[12]  A. Gorbenko,et al.  Planning a Typical Working Day for Indoor Service Robots , 2011 .

[13]  Edward M. Riseman,et al.  Image-based homing , 1992 .

[14]  Heinz Hügli,et al.  Robot self-localization using visual attention , 2005, 2005 International Symposium on Computational Intelligence in Robotics and Automation.

[15]  Heinz Hügli,et al.  Real-time visual attention on a massively parallel SIMD architecture , 2003, Real Time Imaging.