Monte Carlo Simulation: Are We There Yet?
暂无分享,去创建一个
[1] Galin L. Jones,et al. On the applicability of regenerative simulation in Markov chain Monte Carlo , 2002 .
[2] Murali Haran,et al. Markov chain Monte Carlo: Can we trust the third significant figure? , 2007, math/0703746.
[3] P. Glynn,et al. The Asymptotic Validity of Sequential Stopping Rules for Stochastic Simulations , 1992 .
[4] Galin L. Jones,et al. Fixed-Width Output Analysis for Markov Chain Monte Carlo , 2006, math/0601446.
[5] Brian S. Caffo,et al. Empirical supremum rejection sampling , 2002 .
[6] C. Geyer,et al. Geometric Ergodicity of Gibbs and Block Gibbs Samplers for a Hierarchical Random Effects Model , 1998 .
[7] James M. Flegal,et al. Multivariate output analysis for Markov chain Monte Carlo , 2015, Biometrika.
[8] Ning Dai,et al. Multivariate initial sequence estimators in Markov chain Monte Carlo , 2017, J. Multivar. Anal..
[9] Andrew F. Seila,et al. Multivariate inference in stationary simulation using batch means , 1987, WSC '87.
[10] Galin L. Jones. On the Markov chain central limit theorem , 2004, math/0409112.
[11] Andrew F. Seila,et al. Multivariate estimation in regenerative simulation , 1982, Oper. Res. Lett..
[12] James M. Flegal,et al. Weighted batch means estimators in Markov chain Monte Carlo. , 2018, 1805.08283.
[13] James M. Flegal,et al. Lugsail lag windows for estimating time-average covariance matrices , 2021, Biometrika.
[14] R. Tweedie,et al. Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .
[15] David Goldsman,et al. Large-Sample Results for Batch Means , 1997 .
[16] D. Vats,et al. Geometric Ergodicity of Gibbs Samplers in Bayesian Penalized Regression Models , 2016, 1609.04057.
[17] Christian P. Robert,et al. Accelerating MCMC algorithms , 2018, Wiley interdisciplinary reviews. Computational statistics.
[18] James M. Flegal,et al. Strong consistency of multivariate spectral variance estimators in Markov chain Monte Carlo , 2015, Bernoulli.
[19] Jesse Frey,et al. Fixed-Width Sequential Confidence Intervals for a Proportion , 2010 .
[20] S. F. Jarner,et al. Geometric ergodicity of Metropolis algorithms , 2000 .
[21] James M. Flegal,et al. Batch means and spectral variance estimators in Markov chain Monte Carlo , 2008, 0811.1729.
[22] Kshitij Khare,et al. Geometric ergodicity of the Bayesian lasso , 2013 .
[23] Galin L. Jones,et al. On the Geometric Ergodicity of Two-Variable Gibbs Samplers , 2012, 1206.4770.
[24] Galin L. Jones,et al. Sufficient burn-in for Gibbs samplers for a hierarchical random effects model , 2004, math/0406454.
[25] D. Andrews. Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation , 1991 .
[26] J. Rosenthal,et al. General state space Markov chains and MCMC algorithms , 2004, math/0404033.
[27] James M. Flegal,et al. Markov chain Monte Carlo estimation of quantiles , 2012, 1207.6432.
[28] M. Kosorok. Monte Carlo error estimation for multivariate Markov chains , 2000 .
[29] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .
[30] S. Haneuse,et al. On the Assessment of Monte Carlo Error in Simulation-Based Statistical Analyses , 2009, The American statistician.
[31] Acosta Archila,et al. Markov Chain Monte Carlo for Linear Mixed Models , 2015 .
[32] Brian P. Dawkins. Siobhan's Problem: The Coupon Collector Revisited , 1991 .