A critical look at the microalgae biodiesel

The quantitative production of microalgae oil is often overestimated. The cost of the salts invested in the production of 1 kg algal diesel approximates the actual price of 1 kg mineral diesel. Total sum of electrical energy expenses for production of biodiesel from microalgae is several-fold higher than the energy income from combustion of the same quantity. The biological value of cultivated microalgae as food is much higher than as fuel. An opinion is shared that money ought to be invested in microalgal biomass production as a food additive, forage, and pharmaceuticals. The aim is to prevent making too hasty steps and investments in microalgal biodiesel.

[1]  Y. Chisti Biodiesel from microalgae beats bioethanol. , 2008, Trends in biotechnology.

[2]  K. Reitan,et al.  EFFECT OF NUTRIENT LIMITATION ON FATTY ACID AND LIPID CONTENT OF MARINE MICROALGAE 1 , 1994 .

[3]  Etsuko Takizawa,et al.  Changes in lipid and fatty acid composition of Pavlova lutheri , 1995 .

[4]  H. Hop,et al.  Lipids and fatty acids in ice algae and phytoplankton from the Marginal Ice Zone in the Barents Sea , 1998, Polar Biology.

[5]  J. Doucha,et al.  Outdoor open thin-layer microalgal photobioreactor: potential productivity , 2009, Journal of Applied Phycology.

[6]  Jianfeng Xu,et al.  Bioethanol and biodiesel: Alternative liquid fuels for future generations , 2010 .

[7]  Hu Hong-Ying,et al.  Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. , 2011 .

[8]  Z. Cohen,et al.  Microbial and algal oils: Do they have a future for biodiesel or as commodity oils? , 2008 .

[9]  R. Wijffels,et al.  An Outlook on Microalgal Biofuels , 2010, Science.

[10]  Yusuf Chisti,et al.  Potential fuel oils from the microalga Choricystis minor , 2010 .

[11]  Kristina M. Weyer,et al.  Theoretical Maximum Algal Oil Production , 2009, BioEnergy Research.

[12]  J. Doucha,et al.  Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate , 2006, Journal of Applied Phycology.

[13]  Y. K. Lee,et al.  Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1 , 1997, Journal of Applied Phycology.

[14]  C. Ratledge Are algal oils realistic options for biofuels , 2011 .

[15]  C. Lan,et al.  Biofuels from Microalgae , 2008, Biotechnology progress.

[16]  A. Kumudha,et al.  Isolation, characterization and outdoor cultivation of green microalgae Botryococcus sp. , 2010 .

[17]  Daniel Chaumont,et al.  Biotechnology of algal biomass production: a review of systems for outdoor mass culture , 1993, Journal of Applied Phycology.

[18]  Nick Nagle,et al.  Production of methyl ester fuel from microalgae , 1990 .

[19]  D. Allen,et al.  Energy-water nexus for mass cultivation of algae. , 2011, Environmental science & technology.

[20]  J. Morison,et al.  Very high productivity of the C4 aquatic grass Echinochloa polystachya in the Amazon floodplain confirmed by net ecosystem CO2 flux measurements , 2000, Oecologia.

[21]  H. Sano,et al.  Distribution of betaine lipids in marinealgae , 1995 .

[22]  W. Thomas,et al.  Yields, photosynthetic efficiencies and proximate composition of dense marine microalgal cultures. I. Introduction and Phaeodactylum tricornutum experiments. , 1984 .

[23]  Otto Pulz,et al.  Photobioreactors: Design and performance with respect to light energy input , 1998 .

[24]  S. Chisholm,et al.  PHYTOPLANKTON LIPIDS: INTERSPECIFIC DIFFERENCES AND EFFECTS OF NITRATE, SILICATE AND LIGHT‐DARK CYCLES 1 , 1981 .

[25]  Georgi Petkov,et al.  Which are fatty acids of the green alga Chlorella , 2007 .

[26]  W. Junk,et al.  Nutrient dynamics of the highly productive C4 macrophyte Echinochloa polystachya on the Amazon floodplain , 1997 .

[27]  T. Volova,et al.  Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252 , 2011, Journal of Applied Phycology.

[28]  G. Fogg,et al.  The Kinetics of Extracellular Glycollate Production by Chlorella pyrenoidosa , 1966 .

[29]  R. Wijffels,et al.  Microalgae: the green gold of the future? : large-scale sustainable cultivation of microalgae for the production of bulk commodities , 2011 .

[30]  Q. Hu,et al.  Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. , 2008, The Plant journal : for cell and molecular biology.

[31]  Satoru Taguchi,et al.  Mass culture optimization studies with four marine microalgae , 1988 .

[32]  T. Volova,et al.  Influence of nitrogen deficiency on biochemical composition of the green alga Botryococcus , 2005, Journal of Applied Phycology.

[33]  J. V. Beilen,et al.  Why microalgal biofuels won't save the internal combustion machine , 2010 .

[34]  A. Vonshak,et al.  Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. , 2002, Phytochemistry.

[35]  Yanna Liang,et al.  Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions , 2009, Biotechnology Letters.

[36]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[37]  G. Petkov Absorber Tower as a Photobioreactor for Microalgae , 2000, Russian Journal of Plant Physiology.

[38]  John R. Benemann,et al.  Microalgae as a source of liquid fuels. Final technical report. [200 references] , 1982 .

[39]  William J. Oswald,et al.  Energy production by microbial photosynthesis , 1977, Nature.

[40]  K. Reddy,et al.  Productivity and nutrient uptake of water hyacinth,Eichhornia crassipes I. Effect of nitrogen source , 1983, Economic Botany.

[41]  G. Petkov NUTRITION MEDIUM FOR INTENSIVE CULTIVATION OF GREEN MICROALGAE IN FRESH AND SEA WATER , 1995 .

[42]  D. Schneider Grow Your Own , 2006 .

[43]  G. Torzillo,et al.  A two‐plane tubular photobioreactor for outdoor culture of Spirulina , 1993, Biotechnology and bioengineering.

[44]  J. Grobbelaar,et al.  Physiological and technological considerations for optimising mass algal cultures , 2000, Journal of Applied Phycology.

[45]  P. Nichols,et al.  Fatty acid and lipid composition of 10 species of microalgae used in mariculture , 1989 .

[46]  T. Tornabene,et al.  Lipid composition of the nitrogen starved green alga Neochloris oleoabundans , 1983 .

[47]  Vinod Kumar,et al.  Isolation and characterization of hydrocarbon producing green alga Botryococcus braunii from Indian freshwater bodies , 2007 .

[48]  Navid Reza Moheimani,et al.  Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds , 2007, Biotechnology and bioengineering.

[49]  A. Vonshak,et al.  Astaxanthin Accumulation in the Green Alga Haematococcus pluvialis1 , 1991 .

[50]  Matthew N Campbell,et al.  Biodiesel: Algae as a Renewable Source for Liquid Fuel , 2008 .

[51]  J. W. Mishoe,et al.  Modeling and analysis of waterhyacinth biomass , 1984 .

[52]  Malcolm R. Brown,et al.  THE BIOCHEMICAL COMPOSITION OF MARINE MICROALGAE FROM THE CLASS EUSTIGMATOPHYCEAE 1 , 1993 .

[53]  R. Appleby,et al.  The distribution and biosynthesis of arachidonic acid in algae , 1969 .

[54]  H. Iwamoto,et al.  Fat Synthesis in Unicellular Algae , 1955 .

[55]  H. W. Milner The fatty acids of Chlorella. , 1948, The Journal of biological chemistry.