Simulation of octave spanning mid-infrared supercontinuum generation in dispersion-varying planar waveguides.

A dispersion-varying tapered planar waveguide is designed to generate supercontinuum efficiently in the mid-infrared region. The rib waveguide of lead-silicate glass on silica is 1.8 cm long, consisting of a segment with longitudinally increasing etch depth. The mechanism involves nonlinear soliton dynamics. The dispersion profile is shifted along the propagation distance, leading to continuous modification of the phase-matching condition for dispersive wave (DW) emission and enhancement of energy transfer efficiency between solitons and DWs. With low input pulse energy of 45 pJ, simulation demonstrates the generation of both broadband and flat near-octave spectrum spanning 1.3-2.5 μm at the -20  dB level.

[1]  N. Dutta,et al.  Dispersion-engineered tapered planar waveguide for coherent supercontinuum generation , 2014 .

[2]  A. Mussot,et al.  Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers. , 2004, Optics express.

[3]  A. E. Willner,et al.  On-Chip Octave-Spanning Supercontinuum in Nanostructured Silicon Waveguides Using Ultralow Pulse Energy , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  C. M. Weinert,et al.  Uncladded InGaAsP/InP rib waveguides with integrated thickness tapers for efficient fibre-chip butt coupling , 1996 .

[5]  Alireza Marandi,et al.  Octave-spanning supercontinuum generation in in situ tapered As₂S₃ fiber pumped by a thulium-doped fiber laser. , 2013, Optics letters.

[6]  E. Sorokin,et al.  Raman effects in the infrared supercontinuum generation in soft-glass PCFs , 2007, Applied physics. B, Lasers and optics.

[7]  R. Leonhardt,et al.  Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers , 2002 .

[8]  E. M. Vogel,et al.  Nonlinear optical phenomena in glass , 1991 .

[9]  Yang Yue,et al.  On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses. , 2011, Optics express.

[10]  G. Roelkens,et al.  Generation of coherent supercontinuum in a-Si:H waveguides: experiment and modeling based on measured dispersion profile. , 2014, Optics express.

[11]  Periklis Petropoulos,et al.  Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications. , 2008, Optics express.

[12]  A. Husakou,et al.  Supercontinuum generation in planar rib waveguides enabled by anomalous dispersion. , 2006, Optics express.

[13]  Periklis Petropoulos,et al.  Supercontinuum generation in non-silica fibers , 2012 .

[14]  Steve Madden,et al.  Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide. , 2008, Optics express.

[15]  D. Skryabin,et al.  Theory of the soliton self-frequency shift compensation by the resonant radiationin photonic crystal fibers. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  P. Petropoulos,et al.  High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation , 2006, Journal of Lightwave Technology.

[17]  James S. Wilkinson,et al.  KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 buried rib waveguide lasers , 2011 .

[18]  Anatoly Efimov,et al.  Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper. , 2009, Optics express.

[19]  S. Friberg,et al.  Nonlinear optical glasses for ultrafast optical switches , 1987 .

[20]  Niloy K. Dutta,et al.  An efficient method for supercontinuum generation in dispersion-tailored Lead-silicate fiber taper , 2010 .

[21]  Johann Troles,et al.  As₂S₃-silica double-nanospike waveguide for mid-infrared supercontinuum generation. , 2014, Optics letters.

[22]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[23]  Heike Ebendorff-Heidepriem,et al.  Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. , 2003, Optics express.

[24]  J. Bongaerts,et al.  Focusing of coherent X-rays in a tapered planar waveguide , 2000 .

[25]  M. Schmidt,et al.  Supercontinuum generation in chalcogenide-silica step-index fibers. , 2011, Optics express.

[26]  Yi Yu,et al.  A broadband, quasi‐continuous, mid‐infrared supercontinuum generated in a chalcogenide glass waveguide , 2014 .

[27]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[28]  J. R. Taylor,et al.  Supercontinuum Generation in Optical Fibers: Preface , 2010 .

[29]  Jan Siegel,et al.  Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold , 2006 .

[30]  Alexander Hartung,et al.  Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. , 2011, Optics express.

[31]  Hongyu Hu,et al.  Supercontinuum generation in dispersion-managed tapered-rib waveguide. , 2013, Applied optics.

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  Ralf Jedamzik,et al.  Recent results on bulk laser damage threshold of optical glasses , 2013, Photonics West - Lasers and Applications in Science and Engineering.

[34]  Qiang Lin,et al.  Soliton fission and supercontinuum generation in silicon waveguides. , 2007, Optics letters.

[35]  D. Kane,et al.  Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating , 1993 .

[36]  R. Buczynski,et al.  Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers , 2008 .

[37]  Jasbinder S. Sanghera,et al.  Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers. , 2010, Optics express.