Chaotic properties of elementary cellular automata with majority memory
暂无分享,去创建一个
[1] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.
[2] Juan Carlos Seck Tuoh Mora,et al. Complex Dynamics Emerging in Rule 30 with Majority Memory , 2009, Complex Syst..
[3] Andrew Adamatzky,et al. Language networks: Their structure, function, and evolution , 2010 .
[4] Genaro Juárez Martínez,et al. Designing Complex Dynamics in Cellular Automata with Memory , 2013, Int. J. Bifurc. Chaos.
[5] Douglas Lind,et al. An Introduction to Symbolic Dynamics and Coding , 1995 .
[6] Haiyun Xu,et al. Topological Conjugacy Classification of Elementary Cellular Automata with Majority Memory , 2017, Int. J. Bifurc. Chaos.
[7] Petr Kůrka. On the measure attractor of a cellular automaton , 2005 .
[8] François Blanchard,et al. On Li-Yorke pairs , 2002, Journal für die reine und angewandte Mathematik (Crelles Journal).
[9] Leon O. Chua,et al. A Nonlinear Dynamics Perspective of Wolfram's New Kind of Science. Part XIII: Bernoulli sigmatau-Shift Rules , 2010, Int. J. Bifurc. Chaos.
[10] K. Culík,et al. The topological entropy of cellular automata is uncomputable , 1992, Ergodic Theory and Dynamical Systems.
[11] A. Wuensche. Classifying Cellular Automata Automatically , 1998 .
[12] M. Krawczyk. New aspects of symmetry of elementary cellular automata , 2013, 1304.5771.
[13] Bo Chen,et al. A Symbolic Dynamics Perspective of Elementary Cellular Automaton Rule 12 with Minority Memory , 2015, J. Cell. Autom..
[14] B. Kitchens. Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts , 1997 .
[15] Fangyue Chen,et al. Symbolic dynamics of glider guns for some one-dimensional cellular automata , 2016 .
[16] Andrew Adamatzky,et al. Glider-based computing in reaction-diffusion hexagonal cellular automata , 2006 .
[17] Juan Carlos Seck Tuoh Mora,et al. Invertible behavior in elementary cellular automata with memory , 2012, Inf. Sci..
[18] Ramón Alonso-Sanz. A structurally dynamic cellular automaton with memory , 2007 .
[19] Leon O. Chua,et al. A Nonlinear Dynamics Perspective of Wolfram's New Kind of Science Part IV: from Bernoulli Shift to 1/F Spectrum , 2005, Int. J. Bifurc. Chaos.
[20] Andrew Adamatzky,et al. Phase Transition in Elementary Cellular Automata with Memory , 2014, Int. J. Bifurc. Chaos.
[21] Paola Favati,et al. Additive One-Dimensional Cellular Automata are Chaotic According to Devaney's Definition of Chaos , 1997, Theor. Comput. Sci..
[22] Genaro Juárez Martínez,et al. Complex Dynamics of Elementary Cellular Automata Emerging from Chaotic Rules , 2012, Int. J. Bifurc. Chaos.
[23] Gianpiero Cattaneo,et al. Investigating topological chaos by elementary cellular automata dynamics , 2000, Theor. Comput. Sci..
[24] Gianpiero Cattaneo,et al. Generalized Sub-Shifts in Elementary Cellular Automata: The "Strange Case" of Chaotic Rule 180 , 1998, Theor. Comput. Sci..