Cellular Automata and Discrete Complex Systems

A recurring and well studied benchmark problem in the context of computations with cellular automata is the attempt to determine which is the most frequent cell state in an arbitrary initial configuration. Although extremely simple in formulation, the problem has unveiled a rich web of conceptual connections which, at the same time, have enlarged and challenged our understanding about how to perform computations within cellular automata. Here, we outline such a conceptual web, and provide a personal assessment of some of its loose ends, with possibly fruitful paths to address them.

[1]  T. Suzudo Spatial pattern formation in asynchronous cellular automata with mass conservation , 2004 .

[2]  Hildegard Meyer-Ortmanns,et al.  Phase Transition between Synchronous and Asynchronous Updating Algorithms , 2007 .

[3]  Tomas Bohr,et al.  DIRECTED PERCOLATION UNIVERSALITY IN ASYNCHRONOUS EVOLUTION OF SPATIOTEMPORAL INTERMITTENCY , 1998 .

[4]  David Cornforth,et al.  Asynchronous spatial evolutionary games , 2009, Biosyst..

[5]  Franco Zambonelli,et al.  Emergence and control of macro-spatial structures in perturbed cellular automata, and implications for pervasive computing systems , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[6]  H. Bussemaker,et al.  Mean-Field Analysis of a Dynamical Phase Transition in a Cellular Automaton Model for Collective Motion , 1997, physics/9706008.

[7]  Francesca R. Nardi,et al.  On the Essential Features of Metastability: Tunnelling Time and Critical Configurations , 2004 .

[8]  W. R. Stark,et al.  Asynchronous, irregular automata nets: the path not taken. , 2000, Bio Systems.

[9]  Dietrich Kuske,et al.  Weighted asynchronous cellular automata , 2006, Theor. Comput. Sci..

[10]  Chrystopher L. Nehaniv Asynchronous Automata Networks Can Emulate any Synchronous Automata Network , 2004, Int. J. Algebra Comput..

[11]  Dani Lischinski,et al.  Crowds by Example , 2007, Comput. Graph. Forum.

[12]  Juan Carlos Seck Tuoh Mora,et al.  Complex Dynamics Emerging in Rule 30 with Majority Memory , 2009, Complex Syst..

[13]  Larry Bull,et al.  Elementary Cellular Automata with Minimal Memory and Random Number Generation , 2009, Complex Syst..

[14]  LUTZ PRIESE,et al.  A Note on Asynchronous Cellular Automata , 1978, J. Comput. Syst. Sci..

[15]  Damien Regnault,et al.  Stochastic minority on graphs , 2010, Theor. Comput. Sci..

[16]  F. Peper,et al.  Asynchronous game of life , 2004 .

[17]  Henning S. Mortveit,et al.  Dynamics groups of asynchronous cellular automata , 2008 .

[18]  Tommaso Toffoli,et al.  Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations in M , 1984 .

[19]  Larry Bull,et al.  A very effective density classifier two-dimensional cellular automaton with memory , 2009 .

[20]  Susanna M. Messinger,et al.  Task-performing dynamics in irregular, biomimetic networks: Research Articles , 2007 .

[21]  Ramón Alonso-Sanz Discrete Systems With Memory , 2011 .

[22]  Thomas Worsch,et al.  Phase Space Invertible Asynchronous Cellular Automata , 2012, AUTOMATA & JAC.

[23]  Nazim Fatès,et al.  A Robustness Approach to Study Metastable Behaviours in a Lattice-Gas Model of Swarming , 2013, Automata.

[24]  Ramón Alonso-Sanz The Hpp Rule with Memory and the Density Classification Task , 2010 .

[25]  Qingsheng Zhu,et al.  A Direct Proof of Turing Universality of Delay-Insensitive Circuits , 2012, Int. J. Unconv. Comput..

[26]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[27]  B A Huberman,et al.  Evolutionary games and computer simulations. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Henning S. Mortveit,et al.  Coxeter Groups and Asynchronous Cellular Automata , 2010, ACRI.

[29]  Giovanni Pighizzini,et al.  Asynchronous Automata Versus Asynchronous Cellular Automata , 1994, Theor. Comput. Sci..

[30]  Graeme D. Ruxton,et al.  The need for biological realism in the updating of cellular automata models , 1998 .

[31]  Marco Tomassini,et al.  Artificially Evolved Asynchronous Cellular Automata for the Density Task , 2002, ACRI.

[32]  Vicsek,et al.  Lattice-gas model for collective biological motion. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  Damien Regnault,et al.  Progresses in the Analysis of Stochastic 2D Cellular Automata: A Study of Asynchronous 2D Minority , 2007, MFCS.

[34]  Yasusi Kanada,et al.  The Effects of Randomness in Asynchronous 1D Cellular Automata , 1984 .

[35]  Giancarlo Mauri,et al.  A study on learning robustness using asynchronous 1D cellular automata rules , 2012, Natural Computing.

[36]  Sukanta Das,et al.  Reversibility in Asynchronous Cellular Automata , 2012, Complex Syst..

[37]  René Thomas On the Relation Between the Logical Structure of Systems and Their Ability to Generate Multiple Steady States or Sustained Oscillations , 1981 .

[38]  Luís Correia,et al.  A Study of Stochastic Noise and Asynchronism in Elementary Cellular Automata , 2012, ACRI.

[39]  Ferdinand Peper,et al.  Delay-insensitive computation in asynchronous cellular automata , 2005, J. Comput. Syst. Sci..

[40]  A. Schadschneider,et al.  The Asymmetric Exclusion Process: Comparison of Update Procedures , 1997 .

[41]  Jia Lee A Simple Model of Asynchronous Cellular Automata Exploiting Fluctuation , 2011, J. Cell. Autom..

[42]  B. Schönfisch,et al.  Synchronous and asynchronous updating in cellular automata. , 1999, Bio Systems.

[43]  Frédéric Alexandre,et al.  No clock to rule them all , 2011, Journal of Physiology-Paris.

[44]  Andreas Deutsch,et al.  Traffic jams, gliders, and bands in the quest for collective motion of self-propelled particles. , 2011, Physical review letters.

[45]  R. Alonso-Sanz,et al.  MULTIFRACTAL PROPERTIES OF R90 CELLULAR AUTOMATON WITH MEMORY , 2004 .

[46]  Nobuyuki Matsui,et al.  Construction universality in purely asynchronous cellular automata , 2006, J. Comput. Syst. Sci..

[47]  Ali A Minai,et al.  Phase transition in a swarm algorithm for self-organized construction. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Ramón Alonso-Sanz,et al.  Elementary Cellular Automata with Elementary Memory Rules in Cells: The Case of Linear Rules , 2006, J. Cell. Autom..

[49]  Ferdinand Peper,et al.  Reliable Self-Replicating Machines in Asynchronous Cellular Automata , 2007, Artificial Life.

[50]  Andreas Deutsch ORIENTATION-INDUCED PATTERN FORMATION: SWARM DYNAMICS IN A LATTICE-GAS AUTOMATON MODEL , 1996 .

[51]  Ferdinand Peper,et al.  Variations on the Game of Life , 2010, Game of Life Cellular Automata.

[52]  Grégoire Nicolis,et al.  Synchronous versus asynchronous dynamics in spatially distributed systems , 1994 .

[53]  Chao You,et al.  Design of a Reconfigurable Pulsed Quad-Cell for Cellular-Automata-Based Conformal Computing , 2010, Int. J. Reconfigurable Comput..

[54]  Cristian Spitoni,et al.  Metastability for Reversible Probabilistic Cellular Automata with Self-Interaction , 2007 .

[55]  M Ali Saif,et al.  The prisoner’s dilemma with semi-synchronous updates: evidence for a first-order phase transition , 2009, 0910.0961.

[56]  Michel Morvan,et al.  Coalescing Cellular Automata: Synchronization by Common Random Source for Asynchronous Updating , 2009, J. Cell. Autom..

[57]  Ramón Alonso-Sanz,et al.  Reversible cellular automata with memory: two-dimensional patterns from a single site seed , 2003 .

[58]  Henning S. Mortveit,et al.  Order Independence in Asynchronous Cellular Automata , 2008, J. Cell. Autom..

[59]  Larry Bull,et al.  Random number generation by cellular automata with memory , 2008 .

[60]  Luca Manzoni Asynchronous cellular automata and dynamical properties , 2012, Natural Computing.

[61]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[62]  Joel L. Schiff,et al.  Cellular Automata: A Discrete View of the World (Wiley Series in Discrete Mathematics & Optimization) , 2007 .