Nonclassical correlation in NMR quadrupolar systems

The existence of quantum correlation (as revealed by quantum discord), other than entanglement and its role in quantum-information processing (QIP), is a current subject for discussion. In particular, it has been suggested that this nonclassical correlation may provide computational speedup for some quantum algorithms. In this regard, bulk nuclear magnetic resonance (NMR) has been successfully used as a test bench for many QIP implementations, although it has also been continuously criticized for not presenting entanglement in most of the systems used so far. In this paper, we report a theoretical and experimental study on the dynamics of quantum and classical correlations in an NMR quadrupolar system. We present a method for computing the correlations from experimental NMR deviation-density matrices and show that, given the action of the nuclear-spin environment, the relaxation produces a monotonic time decay in the correlations. Although the experimental realizations were performed in a specific quadrupolar system, the main results presented here can be applied to whichever system uses a deviation-density matrix formalism.

[1]  David P. DiVincenzo,et al.  Quantum Computing: A Short Course from Theory to Experiment , 2004 .

[2]  C. Slichter Principles of magnetic resonance , 1963 .

[3]  I. S. Oliveira,et al.  Quantum-state tomography for quadrupole nuclei and its application on a two-qubit system , 2004 .

[4]  R. Serra,et al.  Sudden change in quantum and classical correlations and the Unruh effect , 2010, 1003.4477.

[5]  M. Horodecki,et al.  The entanglement of purification , 2002, quant-ph/0202044.

[6]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[7]  Timothy F. Havel,et al.  NMR Based Quantum Information Processing: Achievements and Prospects , 2000, quant-ph/0004104.

[8]  A. Acín,et al.  Almost all quantum states have nonclassical correlations , 2009, 0908.3157.

[9]  I. S. Oliveira,et al.  Magnetism and Magnetic Resonance in Solids , 1998 .

[10]  S. Luo Quantum discord for two-qubit systems , 2008 .

[11]  Jair C. C. Freitas,et al.  NMR Quantum Information Processing , 2007 .

[12]  G. Guo,et al.  Experimental investigation of classical and quantum correlations under decoherence. , 2009, Nature communications.

[13]  Wojciech Hubert Zurek Quantum discord and Maxwell's demons , 2003 .

[14]  V. Vedral,et al.  Classical and quantum correlations under decoherence , 2009, 0905.3396.

[15]  M. Horodecki,et al.  Locking classical correlations in quantum States. , 2003, Physical review letters.

[16]  Benjamin Schumacher,et al.  Quantum mutual information and the one-time pad , 2006 .

[17]  Jae-Seung Lee,et al.  Pseudopure state of a twelve-spin system. , 2005, The Journal of chemical physics.

[18]  V. Vedral Classical correlations and entanglement in quantum measurements. , 2002, Physical review letters.

[19]  T. S. Mahesh,et al.  Toward quantum information processing by nuclear magnetic resonance: pseudopure states and logical operations using selective pulses on an oriented spin 3/2 nucleus , 2001 .

[20]  Daniel A. Lidar,et al.  Vanishing quantum discord is necessary and sufficient for completely positive maps. , 2008, Physical review letters.

[21]  I. S. Oliveira,et al.  A study of the relaxation dynamics in a quadrupolar NMR system using Quantum State Tomography. , 2008, Journal of magnetic resonance.

[22]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[23]  F. F. Fanchini,et al.  System-reservoir dynamics of quantum and classical correlations , 2009, 0910.5711.

[24]  A. Tracey,et al.  Effect of counterion substitution on the type and nature of nematic lyotropic phases from nuclear magnetic resonance studies , 1976 .

[25]  Michael A. Nielsen,et al.  Quantum Computation and Quantum Information Theory , 2000 .

[26]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[27]  Alfred G. Redfield,et al.  On the Theory of Relaxation Processes , 1957, IBM J. Res. Dev..

[28]  S. Popescu,et al.  Good dynamics versus bad kinematics: is entanglement needed for quantum computation? , 1999, Physical review letters.

[29]  M Christandl,et al.  Broadcast copies reveal the quantumness of correlations. , 2009, Physical review letters.

[30]  W. S. Veeman,et al.  Characterization of quantum algorithms by quantum process tomography using quadrupolar spins in solid-state nuclear magnetic resonance. , 2005, The Journal of chemical physics.

[31]  G. Bodenhausen,et al.  Multiple‐quantum NMR spectroscopy of S=3/2 spins in isotropic phase: A new probe for multiexponential relaxation , 1986 .

[32]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[33]  E. Sudarshan,et al.  Completely positive maps and classical correlations , 2007, quant-ph/0703022.

[34]  E. Knill,et al.  Complete quantum teleportation using nuclear magnetic resonance , 1998, Nature.

[35]  B. Fung,et al.  Nuclear magnetic resonance quantum logic gates using quadrupolar nuclei , 2000 .

[36]  B. Lanyon,et al.  Experimental quantum computing without entanglement. , 2008, Physical review letters.

[37]  Animesh Datta,et al.  Signatures of nonclassicality in mixed-state quantum computation , 2008, 0811.4003.

[38]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[39]  J. Oppenheim,et al.  Thermodynamical approach to quantifying quantum correlations. , 2001, Physical review letters.

[40]  T. Paterek,et al.  Unified view of quantum and classical correlations. , 2009, Physical review letters.

[41]  I. S. Oliveira,et al.  Quantum logical operations for spin 3/2 quadrupolar nuclei monitored by quantum state tomography. , 2005, Journal of magnetic resonance.

[42]  Vlatko Vedral,et al.  Introduction to Quantum Information Science (Oxford Graduate Texts) , 2006 .

[43]  R. M. Serra,et al.  Quantum and classical thermal correlations in the XY spin-(1/2) chain , 2010, 1002.3906.

[44]  A. Winter,et al.  Quantum, classical, and total amount of correlations in a quantum state , 2004, quant-ph/0410091.

[45]  J. A. Jones NMR quantum computation , 2000 .

[46]  P. Horodecki,et al.  No-local-broadcasting theorem for multipartite quantum correlations. , 2007, Physical review letters.

[47]  Lorenza Viola,et al.  NMR quantum information processing and entanglement , 2002, Quantum Inf. Comput..

[48]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[49]  I. S. Oliveira,et al.  Quantum state tomography for quadrupolar nuclei using global rotations of the spin system. , 2007, The Journal of chemical physics.

[50]  F. F. Fanchini,et al.  Non-Markovian dynamics of quantum discord , 2009, 0911.1096.

[51]  S. Luo Using measurement-induced disturbance to characterize correlations as classical or quantum , 2008 .

[52]  M. Horodecki,et al.  Local versus nonlocal information in quantum-information theory: Formalism and phenomena , 2004, quant-ph/0410090.

[53]  Timothy F. Havel,et al.  Benchmarking quantum control methods on a 12-qubit system. , 2006, Physical review letters.

[54]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[55]  Vlatko Vedral,et al.  Introduction to Quantum Information Science , 2006 .

[56]  Timothy F. Havel,et al.  Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing , 2002, quant-ph/0202065.

[57]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[58]  F. F. Fanchini,et al.  Robustness of quantum discord to sudden death , 2009, 0905.3376.

[59]  A. Szabó,et al.  Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity , 1982 .

[60]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[61]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[62]  Paul S. Hubbard,et al.  Nonexponential Nuclear Magnetic Relaxation by Quadrupole Interactions , 1970 .