Improved Seasonal Prediction of European Summer Temperatures With New Five‐Layer Soil‐Hydrology Scheme

We evaluate the impact of a new five-layer soil-hydrology scheme on seasonal hindcast skill of 2 m temperatures over Europe obtained with the Max Planck Institute Earth System Model (MPI-ESM). Assimilation experiments from 1981 to 2010 and 10-member seasonal hindcasts initialized on 1 May each year are performed with MPI-ESM in two soil configurations, one using a bucket scheme and one a new five-layer soil-hydrology scheme. We find the seasonal hindcast skill for European summer temperatures to improve with the five-layer scheme compared to the bucket scheme and investigate possible causes for these improvements. First, improved indirect soil moisture assimilation allows for enhanced soil moisture-temperature feedbacks in the hindcasts. Additionally, this leads to improved prediction of anomalies in the 500 hPa geopotential height surface, reflecting more realistic atmospheric circulation patterns over Europe.

[1]  C. Appenzeller,et al.  Two‐dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro‐Atlantic region , 2006 .

[2]  B. Hurk,et al.  A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System , 2009 .

[3]  J. C. Comiso,et al.  Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3 , 2017 .

[4]  Florian Pappenberger,et al.  Improved seasonal prediction of the hot summer of 2003 over Europe through better representation of uncertainty in the land surface , 2016 .

[5]  W. Hibler A Dynamic Thermodynamic Sea Ice Model , 1979 .

[6]  D. Stephenson,et al.  Detecting Improvements in Forecast Correlation Skill: Statistical Testing and Power Analysis , 2017 .

[7]  Jens Kattge,et al.  Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? , 2007 .

[8]  Lifeng Luo,et al.  The Second Phase of the Global Land–Atmosphere Coupling Experiment: Soil Moisture Contributions to Subseasonal Forecast Skill , 2011 .

[9]  D. Hémon,et al.  La canicule du mois d'août 2003 en France , 2004 .

[10]  D. Hémon,et al.  [The heat wave in France in August 2003]. , 2004, Revue d'epidemiologie et de sante publique.

[11]  Luca Bonaventura,et al.  The atmospheric general circulation model ECHAM 5. PART I: Model description , 2003 .

[12]  Antje Weisheimer,et al.  On the predictability of the extreme summer 2003 over Europe: EUROPEAN SUMMER 2003 PREDICTABILITY , 2011 .

[13]  A. Ducharne,et al.  Testing conceptual and physically based soil hydrology schemes against observations for the Amazon Basin , 2014 .

[14]  K. McGuffie,et al.  The Project for Intercomparison of Land-surface Parametrization Schemes (PILPS): 1992 to 1995 , 1996 .

[15]  F. Pappenberger,et al.  ERA-Interim/Land: a global land surface reanalysis data set , 2015 .

[16]  Tobias Stacke,et al.  Impact of the soil hydrology scheme on simulated soil moisture memory , 2013, Climate Dynamics.

[17]  S. Seneviratne,et al.  Land–atmosphere coupling and climate change in Europe , 2006, Nature.

[18]  M. Blackburn,et al.  Factors contributing to the summer 2003 European heatwave , 2004 .

[19]  M. Balmaseda,et al.  Evaluation of the ECMWF ocean reanalysis system ORAS4 , 2013 .

[20]  Omar Bellprat,et al.  Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe , 2016, Climate Dynamics.

[21]  Y. Masumoto,et al.  Origin of extreme summers in Europe: the Indo-Pacific connection , 2013, Climate Dynamics.

[22]  Francisco J. Doblas-Reyes,et al.  Realistic greenhouse gas forcing and seasonal forecasts , 2007 .

[23]  H. Douville,et al.  Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability , 2017, Climate Dynamics.

[24]  J. Marotzke,et al.  Assimilation of sea-ice concentration in a global climate model – physical and statistical aspects , 2012 .

[25]  R. Pierrehumbert,et al.  Dynamics of Weather Regimes: Quasi-Stationary Waves and Blocking. , 1982 .

[26]  S. Seneviratne,et al.  Investigating soil moisture-climate interactions in a changing climate: A review , 2010 .

[27]  S. Tietsche,et al.  The prediction of surface temperature in the new seasonal prediction system based on the MPI-ESM coupled climate model , 2015, Climate Dynamics.

[28]  E. Fischer,et al.  Contribution of land‐atmosphere coupling to recent European summer heat waves , 2007 .

[29]  W. Müller,et al.  Influence of the circumglobal wave-train on European summer precipitation , 2013, Climate Dynamics.

[30]  Thomas E. Fricker,et al.  A verification framework for interannual-to-decadal predictions experiments , 2012, Climate Dynamics.

[31]  B. Stevens,et al.  Atmospheric component of the MPI‐M Earth System Model: ECHAM6 , 2013 .

[32]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[33]  Taikan Oki,et al.  The Second Global Soil Wetness Project (GSWP-2) , 2003 .

[34]  H. Douville Relative contribution of soil moisture and snow mass to seasonal climate predictability: a pilot study , 2010 .

[35]  Toby N. Carlson,et al.  Mid-Latitude Weather Systems , 1991 .

[36]  B. Stevens,et al.  Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5 , 2013 .

[37]  Johanna Baehr,et al.  Ensemble initialization of the oceanic component of a coupled model through bred vectors at seasonal-to-interannual timescales , 2013 .

[38]  S. Hagemann,et al.  Lifetime of soil moisture perturbations in a coupled land–atmosphere simulation , 2015 .