Synchronous Machine Parameter Identification

ABSTRACT This paper presents a survey of synchronous machine modeling and parameter identification. In addition, the paper presents results of a study conducted to estimate the effects of measurement noise on the estimation of machine parameters from Standstill Frequency Response (SSFR) test data. Results obtained indicate that because the test data are inherently noise-corrupted, multiple solution sets can be obtained. Furthermore, the effect of noise on time-domain parameter estimation of synchronous machine models axe studied. It is shown that a unique set of parameters can be obtained and the noise effects can be dealt with effectively when the maximum likelihood estimatiou (ML) technique is used to estimate machine parameters.

[1]  P. L. Dandeno,et al.  Development of Detailed Turbogenerator Equivalent Circuits from Standstill Frequency Response Measurements , 1981 .

[2]  A. Keyhani,et al.  The Effects of Noise on Frequency-Domain Parameter Estimation of Synchronous Machine Models , 1989, IEEE Power Engineering Review.

[3]  P.L. Dandeno Current Usage & Suggested Practices in Power System Stability Simulations for Synchronous Machines , 1986, IEEE Transactions on Energy Conversion.

[4]  W. J. Wilson,et al.  Synchronous machine parameter identification: a time domain approach , 1988 .

[5]  Harit Majmudar Electromechanical energy converters , 1965 .

[6]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[7]  V. Brandwajn Representation of MAagnetic Saturation in the Synchronous Machine Model in an Electro-Mlagnetic Transients Program , 1980, IEEE Transactions on Power Apparatus and Systems.

[8]  Thomas A. Lipo,et al.  An Improved Model for Saturated Salient Pole Synchronous Motors , 1989, IEEE Power Engineering Review.

[9]  J. S. Edmonds,et al.  Trajectory sensitivity based identification of synchronous generator and excitation system parameters , 1988 .

[10]  J.W. Dougherty,et al.  Finite Element Modeling of Large Turbine Generators; Calculations Versus Load Test Data , 1981, IEEE Transactions on Power Apparatus and Systems.

[11]  T. H. Barton,et al.  Small Perturbation Linearization of the Saturated Synchronous Machine Equations , 1972 .

[12]  M. El-sherbiny,et al.  Analysis of Dynamic Performance of Saturated Machine and Analog Simulation , 1982, IEEE Transactions on Power Apparatus and Systems.

[13]  A. S. Abdallah,et al.  Experimental study of the saturation and the cross-magnetizing phenomenon in saturated synchronous machines , 1988 .

[14]  D. K. Sharma,et al.  Benefit Assessment of Finite-Element Based Generator Saturation Model , 1987 .

[15]  T. Bohlin,et al.  On the maximum likelihood method of identification , 1970 .

[16]  A. Keyhani,et al.  Observers for Tracking of Synchronous Machine Parameters and Detection of Incipient Faults , 1986, IEEE Power Engineering Review.

[17]  Paul C. Krause,et al.  Analysis of electric machinery , 1987 .

[18]  Ronald G. Harley,et al.  The General Theory of Alternating Current Machines , 1975 .

[19]  G. Shackshaft,et al.  Model of generator saturation for use in power-system studies , 1979 .

[20]  R. C. Beck,et al.  Time-domain identification of synchronous machine parameters from simple standstill tests , 1990 .

[21]  R. G. Harley,et al.  Comparative study of saturation methods in synchronous machine models , 1980 .

[22]  P. Kundur,et al.  Adaptation and Validation of Turbogenerator Model Parameters Through On-Line Frequency Response Measurements , 1981, IEEE Transactions on Power Apparatus and Systems.

[23]  Karl Johan Åström Maximum likelihood and prediction error methods , 1980, Autom..

[24]  J. A. Mallick,et al.  Modeling of Solid Rotor Turbogenerators Part I: Theory and Techniques , 1978, IEEE Transactions on Power Apparatus and Systems.

[25]  L. N. Hannett,et al.  Representation of Saturation in Synchronous Machines , 1986 .

[26]  N. Jaleeli,et al.  A Quasilinearization Based Algorithm for the Identification of Transient and Subtransient Parameters of Synchronous Machines , 1986, IEEE Transactions on Power Systems.

[27]  P. Kundur,et al.  Validation of Turbogenerator Stability Models by Comparisons with Power System Tests , 1981, IEEE Transactions on Power Apparatus and Systems.

[28]  J. H. Fish,et al.  Saturation Functions for Synchronous Generators from Finite Elements , 1987, IEEE Power Engineering Review.

[29]  N.G. Hingorani,et al.  High Power Electronics and flexible AC Transmission System , 1988, IEEE Power Engineering Review.

[30]  G. Xie,et al.  Nonlinear Model of Nonsalient Synchronous Machines , 1984, IEEE Transactions on Power Apparatus and Systems.

[31]  A. Keyhani,et al.  Maximum Likelihood Estimation of Solid-Rotor Synchronous Machine Parameters from SSFR Test Data , 1989, IEEE Power Engineering Review.

[32]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[33]  R. Mehra,et al.  Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations , 1974 .

[34]  Robert L. Winchester,et al.  Direct- and Quadrature-Axis Equivalent Circuits for Solid-Rotor Turbine Generators , 1969 .

[35]  M.E. Coultes,et al.  Synchronous Machine Models by Standstill Frequency Response Tests , 1981, IEEE Transactions on Power Apparatus and Systems.

[36]  N. Demerdash,et al.  A Practical Approach to Inclusion of Electromagnetic Field Nonlinearities in Dynamic Modeling of Large Turbogenerators-Part (I): Basic Principles for Inclusion of Instantaneous Magnetic Saturation , 1981, IEEE Transactions on Power Apparatus and Systems.

[37]  J. A. Mallick,et al.  Modeling of Solid Rotor Turbogenerators Part II: Example of Model Derivation and Use in Digital Simulation , 1978, IEEE Transactions on Power Apparatus and Systems.

[38]  P. Vas,et al.  A Method of Including the Effects of Main Flux Path Saturation in the Generalized Equations of A.C. Machines , 1983, IEEE Power Engineering Review.

[39]  Charles Concordia,et al.  Synchronous machines : theory and performance , 1951 .

[40]  H. H. Happ,et al.  Power System Control and Stability , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[41]  K. Åström,et al.  Uniqueness of the maximum likelihood estimates of the parameters of an ARMA model , 1974 .

[42]  S. Yokokawa,et al.  Idenntification of Parameters for Power System Stability Analysis Using Kalman Filter , 1981, IEEE Transactions on Power Apparatus and Systems.

[43]  Ali Keyhani,et al.  IGSPICE simulation of induction machines with saturable inductances , 1989 .