OperatorNet: Recovering 3D Shapes From Difference Operators

This paper proposes a learning-based framework for reconstructing 3D shapes from functional operators, compactly encoded as small-sized matrices. To this end we introduce a novel neural architecture, called OperatorNet, which takes as input a set of linear operators representing a shape and produces its 3D embedding. We demonstrate that this approach significantly outperforms previous purely geometric methods for the same problem. Furthermore, we introduce a novel functional operator, which encodes the extrinsic or pose-dependent shape information, and thus complements purely intrinsic pose-oblivious operators, such as the classical Laplacian. Coupled with this novel operator, our reconstruction network achieves very high reconstruction accuracy, even in the presence of incomplete information about a shape, given a soft or functional map expressed in a reduced basis. Finally, we demonstrate that the multiplicative functional algebra enjoyed by these operators can be used to synthesize entirely new unseen shapes, in the context of shape interpolation and shape analogy applications.

[1]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[2]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[3]  Leonidas J. Guibas,et al.  Volumetric and Multi-view CNNs for Object Classification on 3D Data , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Michael J. Black,et al.  3D Menagerie: Modeling the 3D Shape and Pose of Animals , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Leonidas J. Guibas,et al.  Map-based exploration of intrinsic shape differences and variability , 2013, ACM Trans. Graph..

[6]  Maks Ovsjanikov,et al.  Multi-directional geodesic neural networks via equivariant convolution , 2018, ACM Trans. Graph..

[7]  Alexander M. Bronstein,et al.  Coupled quasi‐harmonic bases , 2012, Comput. Graph. Forum.

[8]  Karthik Ramani,et al.  SurfNet: Generating 3D Shape Surfaces Using Deep Residual Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Ieee Xplore,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Information for Authors , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Leonidas J. Guibas,et al.  Learning Representations and Generative Models for 3D Point Clouds , 2017, ICML.

[11]  Michael J. Black,et al.  Dynamic FAUST: Registering Human Bodies in Motion , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Hans-Peter Seidel,et al.  A Statistical Model of Human Pose and Body Shape , 2009, Comput. Graph. Forum.

[13]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[14]  Karthik Ramani,et al.  Deep Learning 3D Shape Surfaces Using Geometry Images , 2016, ECCV.

[15]  Jonathan Masci,et al.  Learning shape correspondence with anisotropic convolutional neural networks , 2016, NIPS.

[16]  Maks Ovsjanikov,et al.  Unsupervised Deep Learning for Structured Shape Matching , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[17]  Alexander M. Bronstein,et al.  Deformable Shape Completion with Graph Convolutional Autoencoders , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[18]  Leonidas J. Guibas,et al.  Limit Shapes – A Tool for Understanding Shape Differences and Variability in 3D Model Collections , 2019, Comput. Graph. Forum.

[19]  Yaron Lipman,et al.  Multi-chart generative surface modeling , 2018, ACM Trans. Graph..

[20]  Michael J. Black,et al.  SMPL: A Skinned Multi-Person Linear Model , 2023 .

[21]  Sebastian Thrun,et al.  SCAPE: shape completion and animation of people , 2005, SIGGRAPH '05.

[22]  C. Qi Deep Learning on Point Sets for 3 D Classification and Segmentation , 2016 .

[23]  Leonidas J. Guibas,et al.  Functional characterization of intrinsic and extrinsic geometry , 2017, TOGS.

[24]  Cordelia Schmid,et al.  Learning from Synthetic Humans , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Davide Eynard,et al.  Shape‐from‐Operator: Recovering Shapes from Intrinsic Operators , 2015, Comput. Graph. Forum.

[26]  Mathieu Aubry,et al.  3D-CODED: 3D Correspondences by Deep Deformation , 2018, ECCV.

[27]  Alexander M. Bronstein,et al.  Deep Functional Maps: Structured Prediction for Dense Shape Correspondence , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[28]  Trevor F. Cox,et al.  Multidimensional Scaling, Second Edition , 2000 .

[29]  Sebastian Scherer,et al.  VoxNet: A 3D Convolutional Neural Network for real-time object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[30]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[31]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Wojciech Matusik,et al.  Retrieval on parametric shape collections , 2017, TOGS.

[33]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[34]  Pierre Vandergheynst,et al.  Geodesic Convolutional Neural Networks on Riemannian Manifolds , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[35]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[36]  Etienne Corman,et al.  Functional representation of deformable surfaces for geometry processing. (Représentation fonctionnelle des surfaces déformables pour l'analyse et la synthèse géométrique) , 2016 .

[37]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Ersin Yumer,et al.  Convolutional neural networks on surfaces via seamless toric covers , 2017, ACM Trans. Graph..

[39]  Yang Liu,et al.  O-CNN , 2017, ACM Trans. Graph..

[40]  Leonidas J. Guibas,et al.  Computing and processing correspondences with functional maps , 2016, SIGGRAPH Courses.

[41]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[42]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.