NLCertify: A Tool for Formal Nonlinear Optimization

NLCertify is a software package for handling formal certification of nonlinear inequalities involving transcendental multivariate functions. The tool exploits sparse semialgebraic optimization techniques with approximation methods for transcendental functions, as well as formal features. Given a box and a transcendental multivariate function as input, NLCertify provides OCamllibraries that produce nonnegativity certificates for the function over the box, which can be ultimately proved correct inside the Coq proof assistant.

[1]  T. Hales The Kepler conjecture , 1998, math/9811078.

[2]  Christoph Quirin Lauter,et al.  Sollya: An Environment for the Development of Numerical Codes , 2010, ICMS.

[3]  Victor Magron,et al.  Certification of Bounds of Non-linear Functions: The Templates Method , 2013, MKM/Calculemus/DML.

[4]  Jean B. Lasserre,et al.  Positivity and Optimization for Semi-Algebraic Functions , 2009, SIAM J. Optim..

[5]  Victor Magron,et al.  Formal Proofs for Nonlinear Optimization , 2014, J. Formaliz. Reason..

[6]  César A. Muñoz,et al.  Formalization of Bernstein Polynomials and Applications to Global Optimization , 2013, Journal of Automated Reasoning.

[7]  Pierre Corbineau,et al.  On the Generation of Positivstellensatz Witnesses in Degenerate Cases , 2011, ITP.

[8]  Frédéric Besson,et al.  Fast Reflexive Arithmetic Tactics the Linear Case and Beyond , 2006, TYPES.

[9]  Makoto Yamashita,et al.  A high-performance software package for semidefinite programs: SDPA 7 , 2010 .

[10]  Victor Magron,et al.  Certification of inequalities involving transcendental functions: Combining SDP and max-plus approximation , 2013, 2013 European Control Conference (ECC).

[11]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[12]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[13]  Victor Magron,et al.  Certification of real inequalities: templates and sums of squares , 2015, Math. Program..

[14]  Benjamin Grégoire,et al.  A Modular Integration of SAT/SMT Solvers to Coq through Proof Witnesses , 2011, CPP.

[15]  Lawrence C. Paulson,et al.  MetiTarski: An Automatic Theorem Prover for Real-Valued Special Functions , 2010, Journal of Automated Reasoning.

[16]  Thomas C. Hales,et al.  Formal Verification of Nonlinear Inequalities with Taylor Interval Approximations , 2013, NASA Formal Methods.

[17]  Masakazu Muramatsu,et al.  SparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems , 2005 .

[18]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).