A New Class of Automated Theorem-Proving Algorithms

A procedure is defined for deriving from any statement <italic>S</italic> an infinite sequence of statements <italic>S</italic><subscrpt>0</subscrpt>, <italic>S</italic><subscrpt>1</subscrpt>, <italic>S</italic><subscrpt>2</subscrpt>, <italic>S</italic><subscrpt>3</subscrpt>, ··· such that: (a) if there exists an <italic>i</italic> such that <italic>S<subscrpt>i</subscrpt></italic> is unsatisfiable, then <italic>S</italic> is unsatisfiable; (b) if <italic>S</italic> is unsatisfiable, then there exists an <italic>i</italic> such that <italic>S<subscrpt>i</subscrpt></italic> is unsatisfiable; (c) for all <italic>i</italic> the Herbrand universe of <italic>S<subscrpt>i</subscrpt></italic> is finite; hence, for each <italic>i</italic> the satisfiability of <italic>S<subscrpt>i</subscrpt></italic> is decidable. The new algorithms are then based on the idea of generating successive <italic>S<subscrpt>i</subscrpt></italic> in the sequence and testing each <italic>S<subscrpt>i</subscrpt></italic> for satisfiability. Each element in the class of new algorithms is complete.

[1]  James R. Slagle,et al.  Automatic Theorem Proving With Renamable and Semantic Resolution , 1967, JACM.

[2]  Jane J. Robinson A review of automatic theorem-proving , 1967 .

[3]  Donald W. Loveland,et al.  Mechanical Theorem-Proving by Model Elimination , 1968, JACM.

[4]  Journal of the Association for Computing Machinery , 1961, Nature.

[5]  W. W. Bledsoe,et al.  A Linear Format for Resolution With Merging and a New Technique for Establishing Completeness , 1970, JACM.

[6]  Alonzo Church,et al.  A note on the Entscheidungsproblem , 1936, Journal of Symbolic Logic.

[7]  Bernard Meltzer Theorem-Proving for Computers: Some Results on Resolution and Renaming , 1966, Comput. J..

[8]  J. A. Robinson,et al.  Theorem-Proving on the Computer , 1963, JACM.

[9]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[10]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[11]  John Alan Robinson New directions in mechanical theorem proving , 1968, IFIP Congress.

[12]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[13]  Peter B. Andrews Resolution With Merging , 1968, JACM.

[14]  Larry Wos,et al.  Efficiency and Completeness of the Set of Support Strategy in Theorem Proving , 1965, JACM.

[15]  L. Wos,et al.  The unit preference strategy in theorem proving , 1899, AFIPS '64 (Fall, part I).

[16]  Jacques Herbrand Recherches sur la théorie de la démonstration , 1930 .

[17]  Paul C. Gilmore,et al.  A Proof Method for Quantification Theory: Its Justification and Realization , 1960, IBM J. Res. Dev..

[18]  Chin-Liang Chang The Unit Proof and the Input Proof in Theorem Proving , 1970, JACM.

[19]  Maria Davis,et al.  Eliminating the irrelevant from mechanical proofs , 1963 .