In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons

[1]  W. Klein,et al.  Deleterious Effects of Amyloid β Oligomers Acting as an Extracellular Scaffold for mGluR5 , 2010, Neuron.

[2]  Erin M. Schuman,et al.  Microfluidic Local Perfusion Chambers for the Visualization and Manipulation of Synapses , 2010, Neuron.

[3]  E. Schuman,et al.  Cell-selective metabolic labeling of proteins. , 2009, Nature chemical biology.

[4]  J. R. Gomes,et al.  BDNF-induced changes in the expression of the translation machinery in hippocampal neurons: protein levels and dendritic mRNA. , 2009, Journal of proteome research.

[5]  Antoine Triller,et al.  Single‐particle tracking methods for the study of membrane receptors dynamics , 2009, The European journal of neuroscience.

[6]  K. Martin,et al.  Synapse- and Stimulus-Specific Local Translation During Long-Term Neuronal Plasticity , 2009, Science.

[7]  Daniel Choquet,et al.  Control of the Postsynaptic Membrane Viscosity , 2009, The Journal of Neuroscience.

[8]  Daniel Choquet,et al.  The excitatory postsynaptic density is a size exclusion diffusion environment , 2009, Neuropharmacology.

[9]  D. Tirrell,et al.  Two-color labeling of temporally defined protein populations in mammalian cells. , 2008, Bioorganic & Medicinal Chemistry Letters.

[10]  C. Specht,et al.  Molecular dynamics of postsynaptic receptors and scaffold proteins , 2008, Current Opinion in Neurobiology.

[11]  Brad E. Pfeiffer,et al.  Rapid Translation of Arc/Arg3.1 Selectively Mediates mGluR-Dependent LTD through Persistent Increases in AMPAR Endocytosis Rate , 2008, Neuron.

[12]  Michael Z. Lin,et al.  A drug-controllable tag for visualizing newly synthesized proteins in cells and whole animals , 2008, Proceedings of the National Academy of Sciences.

[13]  D. Glanzman,et al.  The Role of Rapid, Local, Postsynaptic Protein Synthesis in Learning-Related Synaptic Facilitation in Aplysia , 2007, Current Biology.

[14]  Carolyn R. Bertozzi,et al.  Copper-free click chemistry for dynamic in vivo imaging , 2007, Proceedings of the National Academy of Sciences.

[15]  S. Sajikumar,et al.  Identification of Compartment- and Process-Specific Molecules Required for “Synaptic Tagging” during Long-Term Potentiation and Long-Term Depression in Hippocampal CA1 , 2007, The Journal of Neuroscience.

[16]  Daniela C Dieterich,et al.  Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging , 2007, Nature Protocols.

[17]  G. Edelman,et al.  BDNF induces widespread changes in synaptic protein content and up-regulates components of the translation machinery: an analysis using high-throughput proteomics. , 2007, Journal of proteome research.

[18]  E. Schuman,et al.  Fluorescence visualization of newly synthesized proteins in mammalian cells. , 2006, Angewandte Chemie.

[19]  E. Schuman,et al.  Dendritic Protein Synthesis, Synaptic Plasticity, and Memory , 2006, Cell.

[20]  P. Caroni,et al.  Long-term live imaging of neuronal circuits in organotypic hippocampal slice cultures , 2006, Nature Protocols.

[21]  Ted Abel,et al.  Compartmentalized PKA signaling events are required for synaptic tagging and capture during hippocampal late-phase long-term potentiation. , 2006, European journal of cell biology.

[22]  Daniela C Dieterich,et al.  Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  C. Cotman,et al.  A microfluidic culture platform for CNS axonal injury, regeneration and transport , 2005, Nature Methods.

[24]  Kenta Hara,et al.  Brain-Derived Neurotrophic Factor Induces Mammalian Target of Rapamycin-Dependent Local Activation of Translation Machinery and Protein Synthesis in Neuronal Dendrites , 2004, The Journal of Neuroscience.

[25]  Jennifer A. Prescher,et al.  A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. , 2004, Journal of the American Chemical Society.

[26]  A James Link,et al.  Non-canonical amino acids in protein engineering. , 2003, Current opinion in biotechnology.

[27]  D. Tirrell,et al.  Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition. , 2003, Journal of the American Chemical Society.

[28]  Brian A. Smith,et al.  A new strategy for the site-specific modification of proteins in vivo. , 2003, Biochemistry.

[29]  M. Kiebler,et al.  A GFP-based system to uncouple mRNA transport from translation in a single living neuron. , 2003, Molecular biology of the cell.

[30]  Qian Wang,et al.  Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. , 2003, Journal of the American Chemical Society.

[31]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[32]  A. Sergé,et al.  Receptor Activation and Homer Differentially Control the Lateral Mobility of Metabotropic Glutamate Receptor 5 in the Neuronal Membrane , 2002, The Journal of Neuroscience.

[33]  Carolyn R Bertozzi,et al.  Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Erin M. Schuman,et al.  Dynamic Visualization of Local Protein Synthesis in Hippocampal Neurons , 2001, Neuron.

[35]  E. Kandel,et al.  A Transient, Neuron-Wide Form of CREB-Mediated Long-Term Facilitation Can Be Stabilized at Specific Synapses by Local Protein Synthesis , 1999, Cell.

[36]  M. Kennedy,et al.  Tetanic Stimulation Leads to Increased Accumulation of Ca2+/Calmodulin-Dependent Protein Kinase II via Dendritic Protein Synthesis in Hippocampal Neurons , 1999, The Journal of Neuroscience.

[37]  E. Kandel,et al.  Synapse-Specific, Long-Term Facilitation of Aplysia Sensory to Motor Synapses: A Function for Local Protein Synthesis in Memory Storage , 1997, Cell.

[38]  K M Harris,et al.  Visualization of the Distribution of Autophosphorylated Calcium/Calmodulin-Dependent Protein Kinase II after Tetanic Stimulation in the CA1 Area of the Hippocampus , 1997, The Journal of Neuroscience.

[39]  U. Frey,et al.  Synaptic tagging and long-term potentiation , 1997, Nature.

[40]  O. Steward,et al.  mRNA Localization in Neurons: A Multipurpose Mechanism? , 1997, Neuron.

[41]  K. Deisseroth,et al.  CREB Phosphorylation and Dephosphorylation: A Ca2+- and Stimulus Duration–Dependent Switch for Hippocampal Gene Expression , 1996, Cell.

[42]  E. Schuman,et al.  A Requirement for Local Protein Synthesis in Neurotrophin-Induced Hippocampal Synaptic Plasticity , 1996, Science.

[43]  E. Kandel,et al.  Requirement of a critical period of transcription for induction of a late phase of LTP. , 1994, Science.

[44]  R. Haugland,et al.  Fluorescent rhodol derivatives: versatile, photostable labels and tracers. , 1992, Analytical biochemistry.

[45]  B. Agranoff,et al.  Puromycin Effect on Memory Fixation in the Goldfish , 1964, Science.

[46]  L. B. Flexner,et al.  Memory in Mice as Affected by Intracerebral Puromycin , 1963, Science.

[47]  David A. Williams,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single – Quantum Dot Tracking , 2012 .

[48]  M. Dahan,et al.  Imaging the lateral diffusion of membrane molecules with quantum dots , 2007, Nature Protocols.

[49]  Y. Barde,et al.  Physiology of the neurotrophins. , 1996, Annual review of neuroscience.

[50]  I. Weiler,et al.  Synapse-activated protein synthesis as a possible mechanism of plastic neural change. , 1994, Progress in brain research.