A Nail-size Piezoelectric Energy Harvesting System Integrating a MEMS Transducer and a CMOS Interface Circuit

Piezoelectric vibration energy harvesting has drawn much interest to power distributed wireless sensor nodes for Internet of Things (IoT) applications where ambient kinetic energy is available. For certain applications, the harvesting system should be small and able to generate sufficient output power. Standard rectification topologies such as the full-bridge rectifier are typically inefficient when adapted to power conditioning from miniaturized harvesters. Therefore, active rectification circuits have been researched to improve overall power conversion efficiency, and meet both the output power and miniaturization requirements while employing a MEMS harvester. In this paper, a MEMS piezoelectric energy harvester is designed and cointegrated with an active rectification circuit designed in a CMOS process to achieve high output power for system miniaturization. A MEMS energy harvester of 0.005 cm size, co-integrated with the CMOS conditioning circuit, outputs a peak rectified DC power of 40.6μW and achieves a record DC power density of 8.12mW/cm when compared to state-of-the-art harvesters.

[1]  Dong Sam Ha,et al.  A Self-Powered High-Efficiency Rectifier With Automatic Resetting of Transducer Capacitance in Piezoelectric Energy Harvesting Systems , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[2]  Aapo Varpula,et al.  Supplementary Information for “ Harvesting Vibrational Energy Using Material Work Functions , 2014 .

[3]  Sijun Du,et al.  An Inductorless Bias-Flip Rectifier for Piezoelectric Energy Harvesting , 2017, IEEE Journal of Solid-State Circuits.

[4]  Marco Tartagni,et al.  A Nanopower Synchronous Charge Extractor IC for Low-Voltage Piezoelectric Energy Harvesting With Residual Charge Inversion , 2016, IEEE Transactions on Power Electronics.

[5]  Yuan Rao,et al.  An Input-Powered Vibrational Energy Harvesting Interface Circuit With Zero Standby Power , 2011, IEEE Transactions on Power Electronics.

[6]  Jaeyun Lee,et al.  Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires , 2014 .

[7]  Adnan Harb,et al.  Energy harvesting: State-of-the-art , 2011 .

[8]  Yinshui Xia,et al.  An efficient self-powered synchronous electric charge extraction interface circuit for piezoelectric energy harvesting systems , 2016 .

[9]  Sijun Du,et al.  Piezoelectric vibration energy harvesting: A connection configuration scheme to increase operational range and output power , 2017 .

[10]  Sijun Du,et al.  A fully integrated split-electrode synchronized-switch-harvesting-on-capacitors (SE-SSHC) rectifier for piezoelectric energy harvesting with between 358% and 821% power-extraction enhancement , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[11]  Chengkuo Lee,et al.  Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper , 2012 .

[12]  A. Seshia,et al.  Twenty-Eight Orders of Parametric Resonance in a Microelectromechanical Device for Multi-band Vibration Energy Harvesting , 2016, Scientific Reports.

[13]  Gabriel A. Rincón-Mora,et al.  A single-inductor AC-DC piezoelectric energy-harvester/battery-charger IC converting ±(0.35 to 1.2V) to (2.7 to 4.5V) , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[14]  Igor Paprotny,et al.  Maximum Performance of Piezoelectric Energy Harvesters When Coupled to Interface Circuits , 2016, IEEE Sensors Journal.

[15]  Peng Zeng,et al.  Kinetic Energy Harvesting Using Piezoelectric and Electromagnetic Technologies—State of the Art , 2010, IEEE Transactions on Industrial Electronics.

[16]  Jinhao Qiu,et al.  Adaptive synchronized switch harvesting: A new piezoelectric energy harvesting scheme for wideband vibrations , 2015 .

[17]  Yu Jia,et al.  An Efficient SSHI Interface With Increased Input Range for Piezoelectric Energy Harvesting Under Variable Conditions , 2016, IEEE Journal of Solid-State Circuits.

[18]  Gehan A. J. Amaratunga,et al.  A Cold-Startup SSHI Rectifier for Piezoelectric Energy Harvesters With Increased Open-Circuit Voltage , 2019, IEEE Transactions on Power Electronics.

[19]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[20]  Shao-Tuan Chen,et al.  Real-world evaluation of a self-startup SSHI rectifier for piezoelectric vibration energy harvesting , 2017 .

[21]  B. H. Stark,et al.  Review of Power Conditioning for Kinetic Energy Harvesting Systems , 2012, IEEE Transactions on Power Electronics.

[22]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[23]  K. Wasa,et al.  Thin-Film Piezoelectric Materials For a Better Energy Harvesting MEMS , 2012, Journal of Microelectromechanical Systems.

[24]  Yu Jia,et al.  An Efficient Inductorless Dynamically Configured Interface Circuit for Piezoelectric Vibration Energy Harvesting , 2017, IEEE Transactions on Power Electronics.

[25]  Ghislain Despesse,et al.  An Autonomous Piezoelectric Energy Harvesting IC Based on a Synchronous Multi-Shot Technique , 2014, IEEE Journal of Solid-State Circuits.

[26]  Zhong Lin Wang,et al.  A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics , 2015, Nature Communications.

[27]  Rasoul Dehghani,et al.  A Topology and Design Optimization Method for Wideband Piezoelectric Wind Energy Harvesters , 2016, IEEE Transactions on Industrial Electronics.

[28]  Yiannos Manoli,et al.  A Fully Autonomous Integrated Interface Circuit for Piezoelectric Harvesters , 2012, IEEE Journal of Solid-State Circuits.

[29]  Adrien Badel,et al.  Analysis of piezoelectric energy harvesting system with tunable SECE interface , 2017 .

[30]  Jaehwan Kim,et al.  A review of piezoelectric energy harvesting based on vibration , 2011 .

[31]  B. H. Stark,et al.  Ultralow Power, Fully Autonomous Boost Rectifier for Electromagnetic Energy Harvesters , 2013, IEEE Transactions on Power Electronics.

[32]  Qiongfeng Shi,et al.  MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices , 2016, Scientific Reports.

[33]  Gabriel A. Rincón-Mora,et al.  A Single-Inductor 0.35 µm CMOS Energy-Investing Piezoelectric Harvester , 2013, IEEE Journal of Solid-State Circuits.

[34]  Dong Sam Ha,et al.  A Self-Powered and Optimal SSHI Circuit Integrated With an Active Rectifier for Piezoelectric Energy Harvesting , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[35]  Einar Halvorsen,et al.  Piezoelectric MEMS energy harvesting systems driven by harmonic and random vibrations , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[36]  Anantha Chandrakasan,et al.  An efficient piezoelectric energy-harvesting interface circuit using a bias-flip rectifier and shared inductor , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[37]  Timothy C. Green,et al.  Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices , 2008, Proceedings of the IEEE.

[38]  Gehan A. J. Amaratunga,et al.  A Passive Design Scheme to Increase the Rectified Power of Piezoelectric Energy Harvesters , 2018, IEEE Transactions on Industrial Electronics.

[39]  Wei-Hsin Liao,et al.  Improved Design and Analysis of Self-Powered Synchronized Switch Interface Circuit for Piezoelectric Energy Harvesting Systems , 2012, IEEE Transactions on Industrial Electronics.

[40]  Khalil Najafi,et al.  A Micro Inertial Energy Harvesting Platform With Self-Supplied Power Management Circuit for Autonomous Wireless Sensor Nodes , 2014, IEEE Journal of Solid-State Circuits.

[41]  C. Van Hoof,et al.  Micropower energy harvesting , 2009, ESSDERC 2009.

[42]  Paolo Fiorini,et al.  Energy autonomous sensor systems: Towards a ubiquitous sensor technology , 2010, Microelectron. J..

[43]  Yiannos Manoli,et al.  A Parallel-SSHI Rectifier for Piezoelectric Energy Harvesting of Periodic and Shock Excitations , 2016, IEEE Journal of Solid-State Circuits.

[44]  Sijun Du,et al.  Micromachined cantilevers-on-membrane topology for broadband vibration energy harvesting , 2016 .