On the modelling of granule size distributions in twin-screw wet granulation: Calibration of a novel compartmental population balance model

[1]  Ingmar Nopens,et al.  In-depth experimental analysis of pharmaceutical twin-screw wet granulation in view of detailed process understanding. , 2017, International journal of pharmaceutics.

[2]  Krist V. Gernaey,et al.  Model-based analysis of a twin-screw wet granulation system for continuous solid dosage manufacturing , 2016, Comput. Chem. Eng..

[3]  T De Beer,et al.  Impact of screw configuration on the particle size distribution of granules produced by twin screw granulation. , 2015, International journal of pharmaceutics.

[4]  Jitendra Kumar,et al.  On two-compartment population balance modeling of spray fluidized bed agglomeration , 2014, Comput. Chem. Eng..

[5]  Michael J. Hounslow,et al.  Twin screw granulation using conveying screws: Effects of viscosity of granulation liquids and flow of powders , 2013 .

[6]  Thomas De Beer,et al.  Real-time assessment of critical quality attributes of a continuous granulation process , 2013, Pharmaceutical development and technology.

[7]  T De Beer,et al.  Continuous twin screw granulation: influence of process variables on granule and tablet quality. , 2012, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[8]  Andy Ingram,et al.  Twin screw wet granulation: the study of a continuous twin screw granulator using Positron Emission Particle Tracking (PEPT) technique. , 2012, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[9]  J. Sun,et al.  Wet granulation in a twin-screw extruder: implications of screw design. , 2010, Journal of pharmaceutical sciences.

[10]  Peter Kleinebudde,et al.  Impact of screw elements on continuous granulation with a twin-screw extruder. , 2008, Journal of pharmaceutical sciences.

[11]  Stefan Heinrich,et al.  Improved accuracy and convergence of discretized population balance for aggregation: The cell average technique , 2006 .

[12]  Tron Solberg,et al.  A novel algorithm for solving population balance equations: the parallel parent and daughter classes. Derivation, analysis and testing , 2005 .

[13]  Benjamin J. McCoy,et al.  Reversible crystal growth–dissolution and aggregation–breakage: numerical and moment solutions for population balance equations , 2004 .

[14]  Michael J. Hounslow,et al.  Kinetics of fluidised bed melt granulation: IV. Selecting the breakage model , 2004 .

[15]  Francis Filbet,et al.  Numerical Simulation of the Smoluchowski Coagulation Equation , 2004, SIAM J. Sci. Comput..

[16]  Stelios Rigopoulos,et al.  Finite‐element scheme for solution of the dynamic population balance equation , 2003 .

[17]  S. Motz,et al.  Comparison of numerical methods for the simulation of dispersed phase systems , 2002 .

[18]  Brian Scarlett,et al.  Population balances for particulate processes - a volume approach. , 2002 .

[19]  Kangtaek Lee,et al.  Solution of the population balance equation using constant-number Monte Carlo , 2002 .

[20]  Doraiswami Ramkrishna,et al.  Efficient solution of population balance equations with discontinuities by finite elements , 2002 .

[21]  Sohrab Rohani,et al.  Solution of population balance equations with a new combined Lax-Wendroff/Crank-Nicholson method , 2001 .

[22]  F. Einar Kruis,et al.  Direct simulation Monte Carlo method for particle coagulation and aggregation , 2000 .

[23]  Kangtaek Lee,et al.  Simultaneous coagulation and break-up using constant-N Monte Carlo , 2000 .

[24]  D. Aldous Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists , 1999 .

[25]  Themis Matsoukas,et al.  Constant-number Monte Carlo simulation of population balances , 1998 .

[26]  J. C. Barrett,et al.  Improving the accuracy of the moments method for solving the aerosol general dynamic equation , 1996 .

[27]  Sin-Chung Chang The Method of Space-Time Conservation Element and Solution Element-A New Approach for Solving the Navier-Stokes and Euler Equations , 1995 .

[28]  William R. Paterson,et al.  Aggregation and gelation. I: Analytical solutions for CST and batch operation , 1994 .

[29]  R. H. Hardin,et al.  A new approach to the construction of optimal designs , 1993 .

[30]  Walter H. Stockmayer,et al.  Theory of Molecular Size Distribution and Gel Formation in Branched‐Chain Polymers , 1943 .

[31]  Daniele Marchisio,et al.  Solution of population balance equations using the direct quadrature method of moments , 2005 .

[32]  Michael J. Hounslow,et al.  A finite element analysis of the steady state population balance equation for particulate systems: Aggregation and growth , 1996 .