Adjoint orbits, generalised parallelisable spaces and consistent truncations
暂无分享,去创建一个
[1] Dylan Golden,et al. Spheres , 2019, ACM SIGGRAPH 2019 Virtual, Augmented, and Mixed Reality.
[2] H. Samtleben,et al. Ten-dimensional origin of Minkowski vacua in N=8 supergravity , 2017, 1710.02163.
[3] G. Inverso. Generalised Scherk-Schwarz reductions from gauged supergravity , 2017, 1708.02589.
[4] E. Malek. Half‐Maximal Supersymmetry from Exceptional Field Theory , 2017, 1707.00714.
[5] D. Lüst,et al. Generalized parallelizable spaces from exceptional field theory , 2017, 1705.09304.
[6] Peter Crooks. Complex adjoint orbits in Lie theory and geometry , 2017, Expositiones Mathematicae.
[7] H. Samtleben,et al. Type II supergravity origin of dyonic gaugings , 2016, 1612.05123.
[8] Falk Hassler. The topology of Double Field Theory , 2016, 1611.07978.
[9] E. Musaev. Exceptional field theory: SL(5) , 2016, Journal of High Energy Physics.
[10] H. Samtleben,et al. Consistent Pauli reduction on group manifolds , 2015, 1510.08926.
[11] H. Samtleben,et al. Dualising consistent IIA/IIB truncations , 2015, 1510.03433.
[12] E. Musaev. Exceptional field theory: SL(5) , 2015, 1512.02163.
[13] H. Samtleben,et al. Consistent Type IIB Reductions to Maximal 5D Supergravity , 2015, 1506.01385.
[14] H. Samtleben,et al. Consistent Kaluza-Klein truncations via exceptional field theory , 2014, 1410.8145.
[15] H. Samtleben,et al. Exceptional field theory. III. E8(8) , 2014, 1406.3348.
[16] Kanghoon Lee,et al. Spheres, Generalised Parallelisability and Consistent Truncations , 2014, 1401.3360.
[17] H. Nicolai,et al. The embedding tensor of Scherk-Schwarz flux compactifications from eleven dimensions , 2013, 1312.1061.
[18] H. Samtleben,et al. Exceptional Field Theory I: $E_{6(6)}$ covariant Form of M-Theory and Type IIB , 2013, 1312.0614.
[19] H. Nicolai,et al. Nonlinear Kaluza-Klein theory for dual fields , 2013, 1309.0266.
[20] H. Nicolai,et al. Generalised geometry from the ground up , 2013, 1307.8295.
[21] H. Nicolai,et al. Testing the nonlinear flux ansatz for maximal supergravity , 2013, 1303.1013.
[22] H. Nicolai,et al. Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions , 2013, 1302.6219.
[23] G. Aldazabal,et al. Extended geometry and gauged maximal supergravity , 2013, 1302.5419.
[24] E. Musaev. Gauged supergravities in 5 and 6 dimensions from generalised Scherk-Schwarz reductions , 2013, 1301.0467.
[25] M. Cederwall,et al. The gauge structure of generalised diffeomorphisms , 2012, 1208.5884.
[26] E. Musaev,et al. Duality invariant M-theory: gauged supergravities and Scherk-Schwarz reductions , 2012, 1208.0020.
[27] P. West,et al. Duality invariant actions and generalised geometry , 2011, 1111.0459.
[28] D. Waldram,et al. Supergravity as generalised geometry I: type II theories , 2011, 1107.1733.
[29] I. Bakhmatov. On T-duality , 2011 .
[30] Kanghoon Lee,et al. Stringy differential geometry, beyond Riemann , 2011, 1105.6294.
[31] Seung Ki Kwak,et al. Frame-like geometry of double field theory , 2010, 1011.4101.
[32] I. Jeon,et al. Differential geometry with a projection: application to double field theory , 2010, 1011.1324.
[33] M. Perry,et al. Generalized geometry and M theory , 2010, 1008.1763.
[34] C. Hull,et al. Generalized metric formulation of double field theory , 2010, 1006.4823.
[35] C. Hull,et al. Background independent action for double field theory , 2010, 1003.5027.
[36] C. Hull,et al. The Gauge algebra of double field theory and Courant brackets , 2009, 0908.1792.
[37] C. Hull,et al. Double Field Theory , 2009, 0904.4664.
[38] R. Minasian,et al. T-duality, generalized geometry and non-geometric backgrounds , 2008, 0807.4527.
[39] J. Bernatska,et al. Geometry and Topology of Coadjoint Orbits of Semisimple Lie Groups , 2008, 0801.2913.
[40] Marco Gualtieri,et al. Generalized Complex Geometry , 2004, University Lecture Series.
[41] G. Gibbons,et al. Consistent group and coset reductions of the bosonic string , 2003, hep-th/0306043.
[42] N. Hitchin. Generalized Calabi-Yau manifolds , 2002, math/0209099.
[43] A. Perelomov,et al. Berry phase in homogeneous Kähler manifolds with linear Hamiltonians , 2001 .
[44] A. Sadrzadeh,et al. S^3 and S^4 Reductions of Type IIA Supergravity , 2000, hep-th/0005137.
[45] A. Sadrzadeh,et al. Consistent SO(6) Reduction Of Type IIB Supergravity on S 5 , 2000, hep-th/0003103.
[46] Siegel. Superspace duality in low-energy superstrings. , 1993, Physical review. D, Particles and fields.
[47] W. Siegel,et al. Two-vierbein formalism for string-inspired axionic gravity. , 1993, Physical review. D, Particles and fields.
[48] H. Nicolai,et al. The consistency of the S7 truncation in d=11 supergravity , 1987 .
[49] J. Schwarz,et al. Spontaneous breaking of supersymmetry through dimensional reduction , 1979 .
[50] E. Wigner,et al. On the Contraction of Groups and Their Representations. , 1953, Proceedings of the National Academy of Sciences of the United States of America.
[51] A. Sommerfeld. 7-dimensional N = 2 consistent truncations using SL(5) exceptional (cid:12)eld theory , 2017 .
[52] Daniel. Generalised Geometry , Parallelisations and Consistent Truncations , 2014 .
[53] B. Nilsson,et al. Kaluza-Klein Supergravity , 1986 .
[54] C. Terng. Isoparametric submanifolds and their Coxeter groups , 1985 .
[55] J. Schwarz,et al. How to get masses from extra dimensions , 1979 .