Adjoint orbits, generalised parallelisable spaces and consistent truncations

[1]  Dylan Golden,et al.  Spheres , 2019, ACM SIGGRAPH 2019 Virtual, Augmented, and Mixed Reality.

[2]  H. Samtleben,et al.  Ten-dimensional origin of Minkowski vacua in N=8 supergravity , 2017, 1710.02163.

[3]  G. Inverso Generalised Scherk-Schwarz reductions from gauged supergravity , 2017, 1708.02589.

[4]  E. Malek Half‐Maximal Supersymmetry from Exceptional Field Theory , 2017, 1707.00714.

[5]  D. Lüst,et al.  Generalized parallelizable spaces from exceptional field theory , 2017, 1705.09304.

[6]  Peter Crooks Complex adjoint orbits in Lie theory and geometry , 2017, Expositiones Mathematicae.

[7]  H. Samtleben,et al.  Type II supergravity origin of dyonic gaugings , 2016, 1612.05123.

[8]  Falk Hassler The topology of Double Field Theory , 2016, 1611.07978.

[9]  E. Musaev Exceptional field theory: SL(5) , 2016, Journal of High Energy Physics.

[10]  H. Samtleben,et al.  Consistent Pauli reduction on group manifolds , 2015, 1510.08926.

[11]  H. Samtleben,et al.  Dualising consistent IIA/IIB truncations , 2015, 1510.03433.

[12]  E. Musaev Exceptional field theory: SL(5) , 2015, 1512.02163.

[13]  H. Samtleben,et al.  Consistent Type IIB Reductions to Maximal 5D Supergravity , 2015, 1506.01385.

[14]  H. Samtleben,et al.  Consistent Kaluza-Klein truncations via exceptional field theory , 2014, 1410.8145.

[15]  H. Samtleben,et al.  Exceptional field theory. III. E8(8) , 2014, 1406.3348.

[16]  Kanghoon Lee,et al.  Spheres, Generalised Parallelisability and Consistent Truncations , 2014, 1401.3360.

[17]  H. Nicolai,et al.  The embedding tensor of Scherk-Schwarz flux compactifications from eleven dimensions , 2013, 1312.1061.

[18]  H. Samtleben,et al.  Exceptional Field Theory I: $E_{6(6)}$ covariant Form of M-Theory and Type IIB , 2013, 1312.0614.

[19]  H. Nicolai,et al.  Nonlinear Kaluza-Klein theory for dual fields , 2013, 1309.0266.

[20]  H. Nicolai,et al.  Generalised geometry from the ground up , 2013, 1307.8295.

[21]  H. Nicolai,et al.  Testing the nonlinear flux ansatz for maximal supergravity , 2013, 1303.1013.

[22]  H. Nicolai,et al.  Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions , 2013, 1302.6219.

[23]  G. Aldazabal,et al.  Extended geometry and gauged maximal supergravity , 2013, 1302.5419.

[24]  E. Musaev Gauged supergravities in 5 and 6 dimensions from generalised Scherk-Schwarz reductions , 2013, 1301.0467.

[25]  M. Cederwall,et al.  The gauge structure of generalised diffeomorphisms , 2012, 1208.5884.

[26]  E. Musaev,et al.  Duality invariant M-theory: gauged supergravities and Scherk-Schwarz reductions , 2012, 1208.0020.

[27]  P. West,et al.  Duality invariant actions and generalised geometry , 2011, 1111.0459.

[28]  D. Waldram,et al.  Supergravity as generalised geometry I: type II theories , 2011, 1107.1733.

[29]  I. Bakhmatov On T-duality , 2011 .

[30]  Kanghoon Lee,et al.  Stringy differential geometry, beyond Riemann , 2011, 1105.6294.

[31]  Seung Ki Kwak,et al.  Frame-like geometry of double field theory , 2010, 1011.4101.

[32]  I. Jeon,et al.  Differential geometry with a projection: application to double field theory , 2010, 1011.1324.

[33]  M. Perry,et al.  Generalized geometry and M theory , 2010, 1008.1763.

[34]  C. Hull,et al.  Generalized metric formulation of double field theory , 2010, 1006.4823.

[35]  C. Hull,et al.  Background independent action for double field theory , 2010, 1003.5027.

[36]  C. Hull,et al.  The Gauge algebra of double field theory and Courant brackets , 2009, 0908.1792.

[37]  C. Hull,et al.  Double Field Theory , 2009, 0904.4664.

[38]  R. Minasian,et al.  T-duality, generalized geometry and non-geometric backgrounds , 2008, 0807.4527.

[39]  J. Bernatska,et al.  Geometry and Topology of Coadjoint Orbits of Semisimple Lie Groups , 2008, 0801.2913.

[40]  Marco Gualtieri,et al.  Generalized Complex Geometry , 2004, University Lecture Series.

[41]  G. Gibbons,et al.  Consistent group and coset reductions of the bosonic string , 2003, hep-th/0306043.

[42]  N. Hitchin Generalized Calabi-Yau manifolds , 2002, math/0209099.

[43]  A. Perelomov,et al.  Berry phase in homogeneous Kähler manifolds with linear Hamiltonians , 2001 .

[44]  A. Sadrzadeh,et al.  S^3 and S^4 Reductions of Type IIA Supergravity , 2000, hep-th/0005137.

[45]  A. Sadrzadeh,et al.  Consistent SO(6) Reduction Of Type IIB Supergravity on S 5 , 2000, hep-th/0003103.

[46]  Siegel Superspace duality in low-energy superstrings. , 1993, Physical review. D, Particles and fields.

[47]  W. Siegel,et al.  Two-vierbein formalism for string-inspired axionic gravity. , 1993, Physical review. D, Particles and fields.

[48]  H. Nicolai,et al.  The consistency of the S7 truncation in d=11 supergravity , 1987 .

[49]  J. Schwarz,et al.  Spontaneous breaking of supersymmetry through dimensional reduction , 1979 .

[50]  E. Wigner,et al.  On the Contraction of Groups and Their Representations. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[51]  A. Sommerfeld 7-dimensional N = 2 consistent truncations using SL(5) exceptional (cid:12)eld theory , 2017 .

[52]  Daniel Generalised Geometry , Parallelisations and Consistent Truncations , 2014 .

[53]  B. Nilsson,et al.  Kaluza-Klein Supergravity , 1986 .

[54]  C. Terng Isoparametric submanifolds and their Coxeter groups , 1985 .

[55]  J. Schwarz,et al.  How to get masses from extra dimensions , 1979 .