D-Brane Instantons and K-Theory Charges

We discuss some physical issues related to the K-theoretic classification of D-brane charges, putting an emphasis on the role of D-brane instantons. The relation to D-instantons provides a physical interpretation to the mathematical algorithm for computing K-theory known as the ``Atiyah-Hirzebruch spectral sequence''. Conjecturally, a formulation in terms of D-instantons leads to a computationally useful formulation of K-homology in general. As an application and illustration of this viewpoint we discuss some issues connected with D-brane charges associated with branes in WZW models. We discuss the case of SU(3) in detail, and comment on the general picture of branes in SU(N), based on a recent result of M. Hopkins.

[1]  Nathan Seiberg,et al.  Remarks on the canonical quantization of the Chern-Simons-Witten theory , 1989 .

[2]  Orientifolds, RR torsion, and K-theory , 2001, hep-th/0103183.

[3]  D-branes, B fields and twisted K theory , 2000, hep-th/0002023.

[4]  Symmetry breaking boundary conditions and WZW orbifolds , 1999, hep-th/9905038.

[5]  A. Sen Tachyon condensation on the brane antibrane system , 1998, hep-th/9805170.

[6]  C. Schweigert,et al.  Symmetry breaking boundaries: II. More structures; Examples , 1999, hep-th/9908025.

[7]  A Derivation of K theory from M theory , 2000, hep-th/0005090.

[8]  M. Atiyah,et al.  Vector bundles and homogeneous spaces , 1961 .

[9]  E. Witten Baryons and branes in anti de Sitter space , 1998, hep-th/9805112.

[10]  A. Ludwig,et al.  The Kondo effect, conformal field theory and fusion rules , 1991 .

[11]  Noncommutative tachyons and K-theory , 2000, hep-th/0009030.

[12]  J. Fuchs,et al.  From Dynkin diagram symmetries to fixed point structures , 1995, hep-th/9506135.

[13]  D-branes and short distances in string theory , 1996, hep-th/9608024.

[14]  R. Bott A note on theSamelson product in the classical groups , 1960 .

[15]  Stefan Fredenhagen,et al.  Branes on group manifolds, gluon condensates, and twisted K-theory , 2001 .

[16]  K. Gawȩdzki Conformal field theory: a case study , 1999, hep-th/9904145.

[17]  P. Vecchia,et al.  A supersymmetric Wess-Zumino lagrangian in two dimensions , 1985 .

[18]  S. Shenker,et al.  Superconformal invariance in two dimensions and the tricritical Ising model , 1985 .

[19]  V. Kac,et al.  Superconformal current algebras and their unitary representations , 1985 .

[20]  Daniel S. Freed Dirac Charge Quantization and Generalized Differential Cohomology , 2000 .

[21]  C. Schweigert,et al.  The geometry of WZW branes , 1999, hep-th/9909030.

[22]  I. Yokota,et al.  Volumes of Compact Symmetric Spaces , 1997 .

[23]  Flux stabilization of D-branes , 2000, hep-th/0003037.

[24]  Twisted K-Theory and K-Theory of Bundle Gerbes , 2001, hep-th/0106194.

[25]  D. Freed,et al.  Anomalies in string theory with D-branes , 1999, hep-th/9907189.

[26]  A.Yu. Alekseev,et al.  Non-commutative worldvolume geometries: D-branes on SU(2) and fuzzy spheres , 1999 .

[27]  A. Alekseev,et al.  D-branes in the WZW model , 1998, hep-th/9812193.

[28]  Raoul Bott,et al.  The space of loops on a Lie group. , 1958 .

[29]  Weyl's Character Formula for Non-connected Lie Groups and Orbital Theory for Twisted Affine Lie Algebras☆ , 1999, math/9909059.

[30]  K-theory and Ramond-Ramond charge , 1997, hep-th/9710230.

[31]  D-Branes And K-Theory , 1998, hep-th/9810188.

[32]  A. Alekseev,et al.  RR charges of D2-branes in the WZW model , 2000, hep-th/0007096.

[33]  D-brane charges in five-brane backgrounds , 2001, hep-th/0108152.

[34]  E. Witten Overview of K theory applied to strings , 2000, hep-th/0007175.

[35]  J. Maldacena,et al.  Geometrical interpretation of D-branes in gauged WZW models , 2001, hep-th/0105038.

[36]  Jurgen Fuchs,et al.  Affine Lie Algebras and Quantum Groups , 1995 .

[37]  D-Branes on Group Manifolds , 1996, hep-th/9612148.