The SU(3) Beta Function from Numerical Stochastic Perturbation Theory
暂无分享,去创建一个
[1] R. Horsley,et al. Wilson loops to 20th order numerical stochastic perturbation theory , 2012, 1205.1659.
[2] F. Knechtli,et al. Determination of the static potential with dynamical fermions , 2010, 1012.3037.
[3] D. Pleiter,et al. A determination of the Lambda parameter from full lattice QCD , 2005, hep-ph/0502212.
[4] F. Renzo,et al. Numerical stochastic perturbation theory for full QCD , 2004, hep-lat/0410010.
[5] R. Sommer,et al. The Nf=0 heavy quark potential from short to intermediate distances , 2001, hep-lat/0108008.
[6] V. A. Miransky,et al. Probing the Infrared Structure of Gauge Theories: A Pade-Approximant Approach , 2000, hep-ph/0010053.
[7] M. Karliner,et al. Asymptotic Pade approximant predictions: Up to five loops in QCD and SQCD , 1997, hep-ph/9710302.
[8] Kogan,et al. Two phases of supersymmetric gluodynamics. , 1995, Physical review letters.
[9] F. Renzo,et al. Four loop result in SU(3) Lattice Gauge Theory by a Stochastic method: Lattice correction to the condensate ∗ , 1994, hep-lat/9405019.
[10] M. Lüscher. Symmetry-breaking aspects of the roughening transition in gauge theories , 1981 .
[11] M. Shifman. Wilson Loop in Vacuum Fields , 1980 .
[12] G. Parisi,et al. PERTURBATION-THEORY WITHOUT GAUGE FIXING , 1980 .