Constructions of Almost Optimal Resilient Boolean Functions on Large Even Number of Variables

In this paper, a technique on constructing nonlinear resilient Boolean functions is described. By using several sets of disjoint spectra functions on a small number of variables, an almost optimal resilient function on a large even number of variables can be constructed. It is shown that given any m, one can construct infinitely many re-variable (n even), m-resilient functions with nonlinearity > 2n-1 - 2n-2. A large class of highly nonlinear resilient functions which were not known are obtained. Then one method to optimize the degree of the constructed functions is proposed. Last, an improved version of the main construction is given.

[1]  Palash Sarkar,et al.  Efficient Implementation of Cryptographically Useful 'Large' Boolean Functions , 2003, IEEE Trans. Computers.

[2]  Palash Sarkar,et al.  New Constructions of Resilient and Correlation Immune Boolean Functions Achieving Upper Bound on Nonlinearity , 2001, Electron. Notes Discret. Math..

[3]  Hans Dobbertin,et al.  Construction of Bent Functions and Balanced Boolean Functions with High Nonlinearity , 1994, FSE.

[4]  Amr M. Youssef,et al.  On the existence of (9,3,5,240) resilient functions , 2006, IEEE Transactions on Information Theory.

[5]  Willi Meier,et al.  Nonlinearity Criteria for Cryptographic Functions , 1990, EUROCRYPT.

[6]  Jennifer Seberry,et al.  Nonlinearly Balanced Boolean Functions and Their Propagation Characteristics (Extended Abstract) , 1993, CRYPTO.

[7]  Palash Sarkar,et al.  Nonlinearity Bounds and Constructions of Resilient Boolean Functions , 2000, CRYPTO.

[8]  Yuriy Tarannikov,et al.  On Resilient Boolean Functions with Maximal Possible Nonlinearity , 2000, INDOCRYPT.

[9]  James L. Massey,et al.  A spectral characterization of correlation-immune combining functions , 1988, IEEE Trans. Inf. Theory.

[10]  William Millan,et al.  Boolean Function Design Using Hill Climbing Methods , 1999, ACISP.

[11]  Subhamoy Maitra,et al.  A Maiorana-McFarland type construction for resilient Boolean functions on n variables (n even) with nonlinearity >2n-1-2n/2+2n/2-2 , 2006, Discret. Appl. Math..

[12]  Palash Sarkar,et al.  Construction of nonlinear resilient Boolean functions using "small" affine functions , 2004, IEEE Transactions on Information Theory.

[13]  Guang Gong,et al.  The Rainbow Attack on Stream Ciphers Based on Maiorana-McFarland Functions , 2006, ACNS.

[14]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[15]  Subhamoy Maitra,et al.  Further constructions of resilient Boolean functions with very high nonlinearity , 2002, IEEE Trans. Inf. Theory.

[16]  Enes Pasalic,et al.  Maiorana–McFarland Class: Degree Optimization and Algebraic Properties , 2006, IEEE Transactions on Information Theory.

[17]  Palash Sarkar,et al.  Construction of Nonlinear Boolean Functions with Important Cryptographic Properties , 2000, EUROCRYPT.

[18]  William Millan,et al.  An effective genetic algorithm for finding highly nonlinear Boolean Functions , 1997, ICICS.

[19]  Jennifer Seberry,et al.  Nonlinearity and Propagation Characteristics of Balanced Boolean Functions , 1995, Inf. Comput..

[20]  Timo Neumann,et al.  BENT FUNCTIONS , 2006 .

[21]  Susan Stepney,et al.  Evolving Boolean Functions Satisfying Multiple Criteria , 2002, INDOCRYPT.

[22]  Thomas Siegenthaler,et al.  Correlation-immunity of nonlinear combining functions for cryptographic applications , 1984, IEEE Trans. Inf. Theory.

[23]  Claude Carlet,et al.  On Correlation-Immune Functions , 1991, CRYPTO.

[24]  Claude Carlet,et al.  A Larger Class of Cryptographic Boolean Functions via a Study of the Maiorana-McFarland Construction , 2002, CRYPTO.

[25]  Yuriy Tarannikov,et al.  On the Constructing of Highly Nonlinear Resilient Boolean Functions by Means of Special Matrices , 2001, INDOCRYPT.

[26]  Selçuk Kavut,et al.  Search for Boolean Functions With Excellent Profiles in the Rotation Symmetric Class , 2007, IEEE Transactions on Information Theory.

[27]  Jennifer Seberry,et al.  On Constructions and Nonlinearity of Correlation Immune Functions (Extended Abstract) , 1994, EUROCRYPT.

[28]  Yuriy Tarannikov New Constructions of Resilient Boolean Functions with Maximal Nonlinearity , 2001, FSE.

[29]  Palash Sarkar,et al.  New Constructions of Resilent and Correlation Immune Boolean Functions achieving Upper Bounds on Nonlinearity , 2000, IACR Cryptol. ePrint Arch..

[30]  Sangjin Lee,et al.  On the Correlation Immune Functions and Their Nonlinearity , 1996, ASIACRYPT.

[31]  J. Dillon Elementary Hadamard Difference Sets , 1974 .

[32]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[33]  William Millan,et al.  Heuristic Design of Cryptographically Strong Balanced Boolean Functions , 1998, EUROCRYPT.