Periodicity and Almost-Periodicity

Periodicity and almost-periodicity are phenomena which play an important role in most branches of mathematics and in many other sciences. This is a survey paper1 on my work in this area and on related work. I restrict myself to periodicity questions in combinatorics on words (the main dish), but I start with a periodicity problem from number theory (the entree) and at the end there is an Appendix by Imre Ruzsa containing a partial answer to one of my problems (the dessert). Sections 1–10 concern one-dimensional results and open problems. Sections 11–16 deal with multi-dimensional analogues. I do not claim completeness in any sense.

[1]  Valérie Berthé,et al.  Balance properties of multi-dimensional words , 2002, Theor. Comput. Sci..

[2]  A. D. Sands On the factorisation of finite abelian groups. III , 1957 .

[3]  Öyvind Beyer,et al.  On the linear diophantine problem of Frobenius in three variables. , 1978 .

[4]  Antonio Restivo,et al.  Fine and Wilf's Theorem for Three Periods and a Generalization of Sturmian Words , 1999, Theor. Comput. Sci..

[5]  H. Wilf,et al.  Uniqueness theorems for periodic functions , 1965 .

[6]  M. Boshernitzan A condition for minimal interval exchange maps to be uniquely ergodic , 1985 .

[7]  Ethan M. Coven,et al.  Sequences with minimal block growth II , 1973, Mathematical systems theory.

[8]  Tadashige Okada On a certain infinite series for a periodic arithmetical function , 1982 .

[9]  Luca Q. Zamboni,et al.  Sequence entropy and the maximal pattern complexity of infinite words , 2002, Ergodic Theory and Dynamical Systems.

[10]  A. E. Livingston The series $sum sb{1}sp{infty },f(n)/n$ for periodic $f$ , 1965 .

[11]  J. W. Sander,et al.  The rectangle complexity of functions on two-dimensional lattices , 2002, Theor. Comput. Sci..

[12]  Laurent Vuillon,et al.  Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences , 2000, Discret. Math..

[13]  P. Erdos,et al.  Old and new problems and results in combinatorial number theory , 1980 .

[14]  Sándor Szabó A type of factorization of finite Abelian groups , 1985, Discret. Math..

[15]  Robert Tijdeman On the minimal complexity of infinite words , 1999 .

[16]  K. Stolarsky,et al.  Beatty Sequences, Continued Fractions, and Certain Shift Operators , 1976, Canadian Mathematical Bulletin.

[17]  Robert Tijdeman Intertwinings of periodic sequences , 1998 .

[18]  R. Graham,et al.  On a linear diophantine problem of Frobenius , 1972 .

[19]  Shin-ichi Yasutomi,et al.  Modified complexity and $*$-Sturmian word , 1999 .

[20]  Filippo Mignosi,et al.  Some Combinatorial Properties of Sturmian Words , 1994, Theor. Comput. Sci..

[21]  Aaron D. Meyerowitz,et al.  Tiling the Integers with Translates of One Finite Set , 1998 .

[22]  Eitan Altman,et al.  Balanced sequences and optimal routing , 2000, JACM.

[23]  Mario Szegedy,et al.  Algorithms to tile the infinite grid with finite clusters , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[24]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[25]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[26]  Aviezri S. Fraenkel,et al.  Complementing and Exactly Covering Sequences , 1973, J. Comb. Theory, Ser. A.

[27]  Robert Tijdeman Fraenkel's conjecture for six sequences , 2000, Discret. Math..

[28]  Luca Q. Zamboni,et al.  Fine and Wilf words for any periods , 2003 .

[29]  Jacques Justin,et al.  On a paper by Castelli, Mignosi, Restivo , 2000, RAIRO Theor. Informatics Appl..

[30]  Danièle Beauquier,et al.  On translating one polyomino to tile the plane , 1991, Discret. Comput. Geom..

[31]  Laurent Vuillon,et al.  Generalized balances in Sturmian words , 2002, Discret. Appl. Math..

[32]  G. Chudnovsky On applications of diophantine approximations. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[33]  R. Morikawa,et al.  On eventually covering families generated by the bracket function V , 1983 .

[34]  R. Tijdeman,et al.  On complementary triples of Sturmian bisequences , 1996 .

[35]  Krishnaswami Alladi Number Theory: Decomposition of the integers as a direct sum of two subsets , 1995 .

[36]  B. Birch,et al.  On a problem of Chowla , 1973 .

[37]  Laurent Vuillon,et al.  Combinatorics of patterns of a bidimensional Sturmian sequence. , 1998 .

[38]  Filippo Mignosi,et al.  Generalizations of the Periodicity Theorem of Fine and Wilf , 1994, CAAP.

[39]  H. Davenport Multiplicative Number Theory , 1967 .

[40]  M. Lothaire Combinatorics on words: Bibliography , 1997 .

[41]  Valérie Berthé,et al.  Suites doubles de basse complexité , 2000 .

[42]  Valérie Berthé,et al.  Frequencies of Sturmian series factors , 1996 .

[43]  Julien Cassaigne Double Sequences with Complexity mn+1 , 1999, J. Autom. Lang. Comb..

[44]  Caroline Series,et al.  The geometry of markoff numbers , 1985 .

[45]  Ronald L. Graham,et al.  Covering the Positive Integers by Disjoint Sets of the Form {[n alpha + beta]: n = 1, 2, ...} , 1973, J. Comb. Theory, Ser. A.

[46]  Donald J. Newman,et al.  Tesselation of integers , 1977 .

[47]  Jeffrey C. Lagarias,et al.  Tiling the line with translates of one tile , 1996 .

[48]  Robert Tijdeman Exact covers of balanced sequences and Fraenkel's conjecture , 2000 .

[49]  Chiara Epifanio,et al.  On a conjecture on bidimensional words , 2003, Theor. Comput. Sci..