Matching Deformable Objects in Clutter

We consider the problem of deformable object detection and dense correspondence in cluttered 3D scenes. Key ingredient to our method is the choice of representation: we formulate the problem in the spectral domain using the functional maps framework, where we seek for the most regular nearly-isometric parts in the model and the scene that minimize correspondence error. The problem is initialized by solving a sparse relaxation of a quadratic assignment problem on features obtained via data-driven metric learning. The resulting matching pipeline is solved efficiently, and yields accurate results in challenging settings that were previously left unexplored in the literature.

[1]  Matthias Nießner,et al.  3DMatch: Learning the Matching of Local 3D Geometry in Range Scans , 2016, ArXiv.

[2]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, SIGGRAPH 2011.

[3]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[4]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[5]  Daniel Cremers,et al.  Partial Functional Correspondence , 2017 .

[6]  Alexander M. Bronstein,et al.  Coupled quasi‐harmonic bases , 2012, Comput. Graph. Forum.

[7]  Jürgen Schmidhuber,et al.  Training Very Deep Networks , 2015, NIPS.

[8]  Michael Möller,et al.  Point-wise Map Recovery and Refinement from Functional Correspondence , 2015, VMV.

[9]  Mohammed Bennamoun,et al.  3D Object Recognition in Cluttered Scenes with Local Surface Features: A Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Daniel Cremers,et al.  Anisotropic Diffusion Descriptors , 2016, Comput. Graph. Forum.

[11]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[12]  Xavier Bresson,et al.  Functional correspondence by matrix completion , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[14]  Leonidas J. Guibas,et al.  Unsupervised Multi-class Joint Image Segmentation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[16]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[17]  Yann LeCun,et al.  Dimensionality Reduction by Learning an Invariant Mapping , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[18]  David Zhang,et al.  Rotation-Invariant Nonrigid Point Set Matching in Cluttered Scenes , 2012, IEEE Transactions on Image Processing.

[19]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[20]  Daniel Cremers,et al.  Bayesian Inference of Bijective Non-Rigid Shape Correspondence , 2016, ArXiv.

[21]  Daniel Cremers,et al.  Optimal Intrinsic Descriptors for Non-Rigid Shape Analysis , 2014, BMVC.

[22]  Andrea Torsello,et al.  A Scale Independent Selection Process for 3D Object Recognition in Cluttered Scenes , 2013, International Journal of Computer Vision.

[23]  Harada Tatsuya,et al.  Learning Similarities for Rigid and Non-Rigid Object Detection , 2014 .

[24]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[25]  Yasuo Kuniyoshi,et al.  Elastic Net Constraints for Shape Matching , 2013, 2013 IEEE International Conference on Computer Vision.

[26]  Jürgen Schmidhuber,et al.  Multimodal Similarity-Preserving Hashing , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Daniel Cremers,et al.  Non‐Rigid Puzzles , 2016, Comput. Graph. Forum.

[28]  Guillermo Sapiro,et al.  Sparse Modeling of Intrinsic Correspondences , 2012, Comput. Graph. Forum.

[29]  Baba C. Vemuri,et al.  Robust Point Set Registration Using Gaussian Mixture Models , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Pierre Vandergheynst,et al.  Geodesic Convolutional Neural Networks on Riemannian Manifolds , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[31]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Alan L. Yuille,et al.  Non-Rigid Point Set Registration by Preserving Global and Local Structures , 2016, IEEE Transactions on Image Processing.

[33]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Anand Rangarajan,et al.  A new algorithm for non-rigid point matching , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[35]  Jonathan Masci,et al.  Palmprint recognition via discriminative index learning , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[36]  Christoph Bregler,et al.  Learning invariance through imitation , 2011, CVPR 2011.

[37]  Samuel Rota Bulò,et al.  Infection and immunization: A new class of evolutionary game dynamics , 2011, Games Econ. Behav..

[38]  Daniel Cremers,et al.  Partial Matching of Deformable Shapes , 2016, 3DOR@Eurographics.

[39]  Yann LeCun,et al.  Signature Verification Using A "Siamese" Time Delay Neural Network , 1993, Int. J. Pattern Recognit. Artif. Intell..

[40]  Gustavo Carneiro,et al.  Learning Local Image Descriptors with Deep Siamese and Triplet Convolutional Networks by Minimizing Global Loss Functions , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[42]  Daniel Cohen-Or,et al.  4-points congruent sets for robust pairwise surface registration , 2008, ACM Trans. Graph..

[43]  M. Bronstein,et al.  SHREC’16: Partial Matching of Deformable Shapes , 2016 .

[44]  Luís A. Alexandre 3D Descriptors for Object and Category Recognition: a Comparative Evaluation , 2012 .

[45]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[46]  Alexander M. Bronstein,et al.  A game-theoretic approach to deformable shape matching , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.