Unsteady Radial Forces on the Impeller of a Centrifugal Pump With Radial Gap Variation

An experimental and numerical study is presented on the unsteady radial forces produced in a centrifugal pump with volute casing. Two impellers with different outlet diameter were considered, which gave radial gaps between blade and tongue of 10% and 15.8% of the impeller radius, respectively. Firstly, the data from pressure fluctuation measurements was processed to obtain the dynamic forces at the blade-passage frequency, for a number of flow-rates. Afterwards, these results were used to check the predictions from a numerical simulation of the pump with the code Fluent. This paper describes the work carried out and summarizes the experimental and the numerical results, for both radial gaps. The steady and unsteady forces at the blade passing frequency obtained by radial integration of the pressure distributions in the shroud side of the pump volute are analysed in detail and similar trends are obtained.Copyright © 2003 by ASME