Radial basis function network approximation and learning in task-dependent feedforward control of nonlinear dynamical systems

[1]  M. Spong Modeling and Control of Elastic Joint Robots , 1987 .

[2]  James D. Keeler,et al.  Predicting the Future: Advantages of Semilocal Units , 1991, Neural Computation.

[3]  Suguru Arimoto,et al.  Bettering operation of Robots by learning , 1984, J. Field Robotics.

[4]  Andrew A. Goldenberg,et al.  Radial basis function network architecture for nonholonomic motion planning and control of free-flying manipulators , 1996, IEEE Trans. Robotics Autom..

[5]  Suguru Arimoto,et al.  Learning control theory for robotic motion , 1990 .

[6]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[7]  D.M. Gorinevsky Learning and approximation in database for feedforward control of flexible manipulator , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[8]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[9]  Snehasis Mukhopadhyay,et al.  Disturbance rejection in nonlinear systems using neural networks , 1993, IEEE Trans. Neural Networks.

[10]  Nira Dyn,et al.  Interpolation of scattered Data by radial Functions , 1987, Topics in Multivariate Approximation.

[11]  Il Hong Suh,et al.  An iterative learning control method with application to robot manipulators , 1988, IEEE J. Robotics Autom..

[12]  Lyle H. Ungar,et al.  Using radial basis functions to approximate a function and its error bounds , 1992, IEEE Trans. Neural Networks.

[13]  Andrew A. Goldenberg,et al.  Neural network architecture for trajectory generation and control of automated car parking , 1996, IEEE Trans. Control. Syst. Technol..

[14]  Visakan Kadirkamanathan,et al.  Sequential Adaptation of Radial Basis Function Neural Networks and its Application to Time-series Prediction , 1990, NIPS 1990.

[15]  Christopher G. Atkeson,et al.  Generalization Properties of Radial Basis Functions , 1990, NIPS.

[16]  Dimitry Gorinevsky,et al.  RBF network feedforward compensation of load disturbance in idle speed control , 1996 .

[17]  D. Gorinevsky An approach to parametric nonlinear least square optimization and application to task-level learning control , 1997, IEEE Trans. Autom. Control..

[18]  David J. Reinkensmeyer,et al.  Task-level robot learning , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[19]  John B. Moore,et al.  Exponential convergence of a learning controller for robot manipulators , 1991 .

[20]  Nader Sadegh,et al.  Experimental evaluation of a new robot learning controller , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[21]  Peter J. Gawthrop,et al.  Neural networks for control systems - A survey , 1992, Autom..

[22]  Stephen A. Billings,et al.  International Journal of Control , 2004 .

[23]  S. Hara,et al.  Repetitive control system: a new type servo system for periodic exogenous signals , 1988 .

[24]  Chris Bishop,et al.  Improving the Generalization Properties of Radial Basis Function Neural Networks , 1991, Neural Computation.

[25]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[26]  Nader Sadegh,et al.  A perceptron network for functional identification and control of nonlinear systems , 1993, IEEE Trans. Neural Networks.

[27]  R. V. Dooren,et al.  A Chebyshev technique for solving nonlinear optimal control problems , 1988 .

[28]  John C. Platt A Resource-Allocating Network for Function Interpolation , 1991, Neural Computation.

[29]  D. Gorinevsky Learning task-dependent input shaping control using radial basis function network , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[30]  Dimitry M. Gorinevsky Direct learning of feedforward control for manipulator path tracking , 1992, Proceedings of the 1992 IEEE International Symposium on Intelligent Control.

[31]  Roberto Horowitz,et al.  A new adaptive learning rule , 1991 .

[32]  O Bock,et al.  Parametric motion control of robotic arms: a biologically based approach using neural networks , 1993 .

[33]  Richard Franke,et al.  Recent Advances in the Approximation of surfaces from scattered Data , 1987, Topics in Multivariate Approximation.

[34]  Dimitry Gorinevsky,et al.  Control of flexible spacecraft using nonlinear approximation of input shape dependence on reorientation maneuver parameters , 1996 .

[35]  Sheng Chen,et al.  Recursive hybrid algorithm for non-linear system identification using radial basis function networks , 1992 .

[36]  Dimitry M. Gorinevsky,et al.  On the persistency of excitation in radial basis function network identification of nonlinear systems , 1995, IEEE Trans. Neural Networks.

[37]  Michael S. Branicky Task-level learning: experiments and extensions , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[38]  Mitsuo Kawato,et al.  Adaptation and learning in control of voluntary movement by the central nervous system , 1988, Adv. Robotics.

[39]  Christopher G. Atkeson,et al.  Using locally weighted regression for robot learning , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[40]  Robert M. Sanner,et al.  Gaussian Networks for Direct Adaptive Control , 1991, 1991 American Control Conference.

[41]  Leonard S. Haynes,et al.  Learning control system design based on 2D theory-an application to parallel link manipulator , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[42]  Dimitry Gorinevsky,et al.  An algorithm for on-line parametric nonlinear least square optimization , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[43]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[44]  Thomas H. Connolly,et al.  Comparison of Some Neural Network and Scattered Data Approximations: The Inverse Manipulator Kinematics Example , 1994, Neural Computation.

[45]  Tadashi Ishihara,et al.  A discrete-time design of robust iterative learning controllers , 1992, IEEE Trans. Syst. Man Cybern..

[46]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[47]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[48]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[49]  Enis Ersü,et al.  Learning control with interpolating memories―general ideas, design lay-out, theoretical approaches and practical applications , 1992 .

[50]  R. Franke Scattered data interpolation: tests of some methods , 1982 .