Can clay nanoparticles accelerate environmental biodegradation of polyolefins?

Abstract Synthetic polyolefins have been used in an enormous array of applications in the modern society, due to a combination of reliable raw materials, low cost processing, tailorable mechanical properties, low density and inertness or stability towards environmental factors. In the last two decades, with the concern of sustainable development, these polyolefins have necessitated further research into: i) finding alternative or renewable raw materials resources, ii) developing polymeric materials from renewable feedstocks that are capable of giving rise to comparable performance to the petrochemical based polymer counterparts and iii) triggering the biological degradation of polyolefins. In order to overcome the issues associated with waste accumulation and disposal, the biological recycling or degradation in the landfill or soil burial, composting and sewage have all been considered as less energy consuming, less toxic and environmentally friendly ways of sustainably managing the life cycle of high volume commodity polymers. It has also been well accepted that an abiotic oxidation (photo-, thermo-oxidation) is a prerequisite for enhancing the biodegradability or biological accessibility of polyolefins. For this purpose, several pro-oxidant approaches have been reported. The present paper reviews how the natural or synthetic clay nanoparticles, which are potential nanoscale fillers recently used for reinforcing polymers, can affect or enhance the biodegradability of polyolefins. They have also been discussed from the perspective of nanocomposite materials with controlled degradability and their associated applications.

[1]  R. Misra,et al.  Nonisothermal crystallization behavior of melt‐intercalated polyethylene‐clay nanocomposites , 2006 .

[2]  Z. Osawa Role of metals and metal-deactivators in polymer degradation , 1988 .

[3]  R. Singh,et al.  Novel hybrid of clay, cellulose, and thermoplastics. I. Preparation and characterization of composites of ethylene–propylene copolymer , 2007 .

[4]  R. Singh,et al.  An overview on the degradability of polymer nanocomposites , 2005 .

[5]  J. Gardette,et al.  Photo-oxidation of Polypropylene/Montmorillonite Nanocomposites. 1. Influence of Nanoclay and Compatibilizing Agent , 2004 .

[6]  Chin-San Wu,et al.  Preparation of Poly(ethylene‐octene) Elastomer/Clay/Wood Flour Nanocomposites by a Melting Method , 2005 .

[7]  S. Mecking,et al.  Nature or petrochemistry?-biologically degradable materials. , 2004, Angewandte Chemie.

[8]  N. Dintcheva,et al.  Effect of extrusion and photo-oxidation on polyethylene/clay nanocomposites , 2009 .

[9]  Margaret Jollands,et al.  Accelerating effect of montmorillonite on oxidative degradation of polyethylene nanocomposites , 2010 .

[10]  Chinmay A. Deshmane,et al.  High strength–toughness combination of melt intercalated nanoclay-reinforced thermoplastic olefins , 2007 .

[11]  S. Bateman,et al.  An overview of degradable and biodegradable polyolefins , 2011 .

[12]  M. Rabello,et al.  Thermal stability of nanocomposites based on polypropylene and bentonite , 2005 .

[13]  R. Chandra,et al.  Biodegradation of maleated linear low-density polyethylene and starch blends , 1997 .

[14]  R. Barbosa,et al.  Comparison of flammability behavior of polyethylene/Brazilian clay nanocomposites and polyethylene/flame retardants , 2007 .

[15]  R. Misra,et al.  Effect of Wollastonite and Talc on the Micromechanisms of Tensile Deformation in Polypropylene Composites , 2004 .

[16]  J. Medina,et al.  Thermal oxidation of clay-nanoreinforced polypropylene , 2010 .

[17]  Marco Zanetti,et al.  Thermal degradation behaviour of PE/clay nanocomposites , 2004 .

[18]  Rudolf Pfaendner,et al.  Nanocomposites: Industrial opportunity or challenge? , 2010 .

[19]  R. Singh,et al.  UV-irradiated biodegradability of ethylene--propylene copolymers, LDPE, and I-PP in composting and culture environments. , 2001, Biomacromolecules.

[20]  R. Misra,et al.  On surface deformation of melt-intercalated polyethylene–clay nanocomposites during scratching , 2006 .

[21]  Q. Yuan,et al.  Near surface deformation associated with the scratch in polypropylene–clay nanocomposite: A microscopic study , 2006 .

[22]  Ulrich Riedel,et al.  Natural fibre‐reinforced biopolymers as construction materials – new discoveries , 1999 .

[23]  T. Buffeteau,et al.  Photo- and Bio-Degradation Processes in Polyethylene, Cellulose and their Blends Studied by ATR-FTIR and Raman Spectroscopies , 2005 .

[24]  R. Misra,et al.  On significant retention of impact strength in clay–reinforced high-density polyethylene (HDPE) nanocomposites , 2006 .

[25]  R. Barbosa,et al.  Processing and characterization of polyethylene/Brazilian clay nanocomposites , 2007 .

[26]  V. Gregoriou,et al.  Ultraviolet Radiation Induced Cold Chemi‐Crystallization in Syndiotactic Polypropylene Clay‐Nanocomposites , 2006 .

[27]  M. Bousmina,et al.  Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world , 2005 .

[28]  A. Tidjani Polypropylene-graft-maleic anhydride-nanocomposites: II: fire behaviour of nanocomposites produced under nitrogen and in air , 2005 .

[29]  G. Scott,et al.  Programmed-life plastics from polyolefins: a new look at sustainability. , 2001, Biomacromolecules.

[30]  R. Misra,et al.  Polymer nanocomposites: Current understanding and issues , 2006 .

[31]  R. Gudavalli,et al.  Nanoparticle effects on the crystallization of polyethylene at elevated pressures , 2008 .

[32]  Marco Zanetti,et al.  Thermal behaviour of poly(propylene) layered silicate nanocomposites , 2001 .

[33]  A. Sharif,et al.  Study on the structure and properties of nanocomposites based on high-density polyethylene/starch blends , 2011 .

[34]  J. Gardette,et al.  Photooxidation of Polypropylene/Montmorillonite Nanocomposites. 2. Interactions with Antioxidants , 2005 .

[35]  K. Gumargalieva,et al.  Biodegradation of Polyolefins Biomedical Applications , 1999 .

[36]  P. Dubois,et al.  Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials , 2000 .

[37]  A. Albertsson,et al.  Molecular Weight Changes and Polymeric Matrix Changes Correlated with the Formation of Degradation Products in Biodegraded Polyethylene , 1998 .

[38]  R. Singh,et al.  Biocomposites of cellulose reinforced starch: improvement of properties by photo-induced crosslinking. , 2008, Bioresource technology.

[39]  Richard H. Harris,et al.  Flammability Properties of Polymer - Layered-Silicate Nanocomposites. Polypropylene and Polystyrene Nanocomposites , 2000 .

[40]  K. Carrado Introduction: Clay Structure,Surface Acidity, and Catalysis , 2004 .

[41]  Mingshu Yang,et al.  Photo-oxidative degradation of polyethylene/montmorillonite nanocomposite , 2003 .

[42]  R. Mülhaupt,et al.  Photo‐Oxidation of sPP/Organoclay Nanocomposites , 2005 .

[43]  B. Guo,et al.  Thermal Decomposition and Oxidation Ageing Behaviour of Polypropylene/Halloysite Nanotube Nanocomposites , 2007 .

[44]  Chinmay A. Deshmane,et al.  On striking variation in impact toughness of polyethylene–clay and polypropylene–clay nanocomposite systems: The effect of clay–polymer interaction , 2007 .

[45]  Mingshu Yang,et al.  The influence of interlayer cations on the photo‐oxidative degradation of polyethylene/montmorillonite composites , 2004 .

[46]  A. Albertsson,et al.  Degradation of enhanced environmentally degradable polyethylene in biological aqueous media: mechanisms during the first stages , 1994 .

[47]  J. Jog,et al.  On stress whitening during surface deformation in clay-containing polymer nanocomposites: A microstructural approach , 2006 .

[48]  G. Scott Invited review‘Green’ polymers☆ , 2000 .

[49]  R. Misra,et al.  Impact fracture behavior of clay–reinforced polypropylene nanocomposites , 2006 .

[50]  N. S. Tomer,et al.  Nanoscale particles for polymer degradation and stabilization—Trends and future perspectives , 2009 .

[51]  D. Weibel,et al.  Morphological, optical, and barrier properties of PP/MMT nanocomposites , 2013, Polymer Bulletin.

[52]  Biplab K. Deka,et al.  Effect of Nanoparticles on Flammability, UV Resistance, Biodegradability, and Chemical Resistance of Wood Polymer Nanocomposite , 2012 .

[53]  R. Singh,et al.  Degradability of composites, prepared from ethylene-propylene copolymer and jute fiber under accelerated aging and biotic environments , 2005 .

[54]  J. Gérard,et al.  PHOTODEGRADATION OF POLYPROPYLENE NANOCOMPOSITES , 2003 .

[55]  B. Mailhot,et al.  PHOTO-OXIDATION OF POLYPROPYLENE/MONTMORILLONITE NANOCOMPOSITES , 2004 .

[56]  S. Shen,et al.  New evidences of accelerating degradation of polyethylene by starch , 2013 .

[57]  A. G. Souza,et al.  Thermal and mechanical properties of PE/organoclay nanocomposites , 2007 .

[58]  Chin-San Wu,et al.  Synthesis and characterization of polyethylene‐octene elastomer/clay/biodegradable starch nanocomposites , 2005 .

[59]  Ioannis S. Arvanitoyannis,et al.  Biodegradable films made from low density polyethylene (LDPE), wheat starch and soluble starch for food packaging applications. Part 2 , 1997 .

[60]  V. Gregoriou,et al.  Photooxidative Degradation and Conformational Changes in Syndiotactic Polypropylene/Clay Nanocomposites , 2006, Applied spectroscopy.

[61]  A. Albertsson,et al.  Degradation product pattern and morphology changes as means to differentiate abiotically and biotically aged degradable polyethylene , 1995 .

[62]  M. Fauzi,et al.  Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites , 2008 .

[63]  B. Haidar,et al.  Photooxidation of ethylene-propylene-diene/montmorillonite nanocomposites , 2005 .

[64]  B. Rao,et al.  Stabilization of γ-sterilized biomedical polyolefins by synergistic mixtures of oligomeric stabilizers , 2006 .

[65]  S. Bhattacharya,et al.  Biodegradation of montmorillonite filled oxo‐biodegradable polyethylene , 2009 .

[66]  Chinmay A. Deshmane,et al.  Nanoparticle effects on spherulitic structure and phase formation in polypropylene crystallized at moderately elevated pressures : The influence on fracture resistance , 2008 .

[67]  T. J. A. Melo,et al.  Nanocompósitos de polietileno/argila bentonita nacional: influência da argila e do agente compatibilizante PE-g-MA nas propriedades mecânicas e de inflamabilidade , 2008 .

[68]  N. S. Tomer,et al.  Photooxidation of vulcanized EPDM/montmorillonite nanocomposites , 2006 .