Large-scale MV efficient frontier computation via a procedure of parametric quadratic programming

Despite the volume of research conducted on efficient frontiers, in many cases it is still not the easiest thing to compute a mean-variance (MV) efficient frontier even when all constraints are linear. This is particularly true of large-scale problems having dense covariance matrices and hence they are the focus in this paper. Because standard approaches for constructing an efficient frontier one point at a time tend to bog down on dense covariance matrix problems with many more than about 500 securities, we propose as an alternative a procedure of parametric quadratic programming for more effective usage on large-scale applications. With the proposed procedure we demonstrate through computational results on problems in the 1000-3000 security range that the efficient frontiers of dense covariance matrix problems in this range are now not only solvable, but can actually be computed in quite reasonable time.

[1]  Jürgen Branke,et al.  Efficient implementation of an active set algorithm for large-scale portfolio selection , 2008, Comput. Oper. Res..

[2]  Richard O. Michaud,et al.  The Markowitz Optimization Enigma: Is ‘Optimized’ Optimal? , 2005 .

[3]  Andrew W. Lo,et al.  IT'S 11 PM—DO YOU KNOW WHERE YOUR LIQUIDITY IS? THE MEAN-VARIANCE-LIQUIDITY FRONTIER ∗ , 2006 .

[4]  Enrique Ballestero,et al.  Portfolio selection on the Madrid Exchange: a compromise programming model , 2003 .

[5]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[6]  B. Eaves On Quadratic Programming , 1971 .

[7]  A. Roy SAFETY-FIRST AND HOLDING OF ASSETS , 1952 .

[8]  H. Markowitz The optimization of a quadratic function subject to linear constraints , 1956 .

[9]  Chang-Chun Lin,et al.  Genetic algorithms for portfolio selection problems with minimum transaction lots , 2008, Eur. J. Oper. Res..

[10]  Fouad Ben Abdelaziz,et al.  Multi-objective stochastic programming for portfolio selection , 2007, Eur. J. Oper. Res..

[11]  Wayne L. Winston Operations research: applications and algorithms / Wayne L. Winston , 2004 .

[12]  M. Arenas,et al.  A fuzzy goal programming approach to portfolio selection , 2001 .

[13]  I. M. Stancu-Minasian,et al.  Efficient Solution Concepts and Their Relations in Stochastic Multiobjective Programming , 2001 .

[14]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[15]  Maria Grazia Speranza,et al.  On LP Solvable Models for Portfolio Selection , 2003, Informatica.

[16]  M. Best An Algorithm for the Solution of the Parametric Quadratic Programming Problem , 1996 .

[17]  Kalyanmoy Deb,et al.  Portfolio optimization with an envelope-based multi-objective evolutionary algorithm , 2009, Eur. J. Oper. Res..

[18]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[19]  G. Mitra,et al.  Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints , 2001 .

[20]  Stefan Schäffler,et al.  Applied Mathematics and Parallel Computing: Festschrift for Klaus Ritter , 2012 .

[21]  Yue Qi,et al.  Randomly generating portfolio-selection covariance matrices with specified distributional characteristics , 2007, Eur. J. Oper. Res..

[22]  Kin Keung Lai,et al.  Fuzzy Portfolio Optimization: Theory and Methods , 2008 .

[23]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[24]  Richard O. Michaud The Markowitz Optimization Enigma: Is 'Optimized' Optimal? , 1989 .

[25]  A. Ruszczynski,et al.  Frontiers of Stochastically Nondominated Portfolios , 2003 .

[26]  E. Elton Modern portfolio theory and investment analysis , 1981 .

[27]  W. Sharpe,et al.  Mean-Variance Analysis in Portfolio Choice and Capital Markets , 1987 .

[28]  P. Pardalos,et al.  On the use of optimization models for portfolio selection: A review and some computational results , 1994 .

[29]  Jürgen Guddat,et al.  Stability in convex quadratic parametric programming , 1976 .

[30]  Refail Kasimbeyli,et al.  Multiobjective Programming and Multiattribute Utility Functions in Portfolio Optimization , 2009, INFOR Inf. Syst. Oper. Res..

[31]  Wei-Guo Zhang,et al.  Portfolio selection under possibilistic mean-variance utility and a SMO algorithm , 2009, Eur. J. Oper. Res..

[32]  M. Morari,et al.  Nonlinear parametric optimization using cylindrical algebraic decomposition , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[33]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[34]  H. Konno,et al.  Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market , 1991 .

[35]  C. B. E. Costa,et al.  A multicriteria model for portfolio management , 2004 .

[36]  A. Roy Safety first and the holding of assetts , 1952 .

[37]  Richard O. Michaud The Markowitz Optimization Enigma: Is 'Optimized' Optimal? , 1989 .

[38]  P. Korhonen,et al.  A reference direction approach to multiple objective quadratic-linear programming , 1997 .