Using dual techniques to derive componentwise and mixed condition numbers for a linear function of a linear least squares solution

We prove duality results for adjoint operators and product norms in the framework of Euclidean spaces. We show how these results can be used to derive condition numbers especially when perturbations on data are measured componentwise relatively to the original data. We apply this technique to obtain formulas for componentwise and mixed condition numbers for a linear function of a linear least squares solution. These expressions are closed when perturbations of the solution are measured using a componentwise norm or the infinity norm and we get an upper bound for the Euclidean norm.

[1]  A. J. Geurts,et al.  A contribution to the theory of condition , 1982 .

[2]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[3]  I. Duff,et al.  On the augmented system approach to sparse least-squares problems , 1989 .

[4]  Jack J. Dongarra,et al.  A proposal for a set of level 3 basic linear algebra subprograms , 1987, SGNM.

[5]  Wayne A. Fuller,et al.  Statistical analysis of measurement error models and applications : proceedings of the AMS-IMS-SIAM Joint Summer Research conference held June 10-16, 1989, with support from the National Science Foundation and the U.S. Army Research Office , 1990 .

[6]  N. Higham A Survey of Componentwise Perturbation Theory in Numerical Linear Algebra , 1994 .

[7]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[8]  Ilse C. F. Ipsen,et al.  On the Sensitivity of Solution Components in Linear Systems of Equations , 1995, SIAM J. Matrix Anal. Appl..

[9]  Robert D. Skeel,et al.  Scaling for Numerical Stability in Gaussian Elimination , 1979, JACM.

[10]  Serge Gratton,et al.  On the condition number of linear least squares problems in a weighted Frobenius norm , 1996 .

[11]  Siegfried M. Rump,et al.  Structured Perturbations Part II: Componentwise Distances , 2003, SIAM J. Matrix Anal. Appl..

[12]  N. Higham,et al.  Componentwise perturbation theory for linear systems with multiple right-hand sides , 1992 .

[13]  A. Laub,et al.  Statistical Condition Estimation for Linear Least Squares , 1998, SIAM J. Matrix Anal. Appl..

[14]  G. M. Clemence,et al.  Blow up of smooth solutions to the barotropic compressible magnetohydrodynamic equations with finite mass and energy , 2008, 0811.4359.

[15]  J. Rice A Theory of Condition , 1966 .

[16]  N. Higham Computing error bounds for regression problems , 1990 .

[17]  Israel Koltracht,et al.  Mixed componentwise and structured condition numbers , 1993 .

[18]  Walter Gautschi,et al.  Mathematics of computation, 1943-1993 : a half-century of computational mathematics : Mathematics of Computation 50th Anniversary Symposium, August 9-13, 1993, Vancouver, British Columbia , 1994 .

[19]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[20]  Jiri Rohn New condition numbers for matrices and linear systems , 2005, Computing.

[21]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[22]  Yimin Wei,et al.  On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems , 2006, Math. Comput..

[23]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[24]  Gene H. Golub,et al.  Matrix computations , 1983 .

[25]  Serge Gratton,et al.  A Partial Condition Number for Linear Least Squares Problems , 2007, SIAM J. Matrix Anal. Appl..

[26]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[27]  F. R. Gantmakher The Theory of Matrices , 1984 .

[28]  Peter Läuchli,et al.  Jordan-Elimination und Ausgleichung nach kleinsten Quadraten , 1961 .

[29]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[30]  Å. Björck Component-wise perturbation analysis and error bounds for linear least squares solutions , 1991 .

[31]  James Demmel,et al.  Extra-Precise Iterative Refinement for Overdetermined Least Squares Problems , 2009, TOMS.

[32]  F. L. Bauer Zusammenfassender Bericht. Genauigkeitsfragen bei der Lösung linearer Gleichungssysteme , 1966 .

[33]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[34]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[35]  W. Prager,et al.  Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides , 1964 .