Buckling Instability of Viral Capsids - A Continuum Approach

The crystallographic structure of spherical viruses is modeled using a multiscale approach combining a macroscopic Helfrich model for morphology evolution with a microscopic approximation of a classical density functional theory for the protein interactions. The derivation of the model is based on energy dissipation and conservation of protein number density. The resulting set of equations is solved within a diffuse domain approach using finite elements and shows buckling transitions of spherical shapes into faceted viral shapes.

[1]  M. Grant,et al.  Phase-field crystal modeling and classical density functional theory of freezing , 2007 .

[2]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[3]  Axel Voigt,et al.  A continuum model of colloid-stabilized interfaces , 2011 .

[4]  Stochastic homogenization of subdifferential inclusions via scale integration , 2010, 1107.2374.

[5]  I. Holopainen Riemannian Geometry , 1927, Nature.

[6]  Asymptotic error distribution of the Euler method for SDEs with non-Lipschitz coefficients , 2009 .

[7]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[8]  Axel Voigt,et al.  Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Ben Schweizer,et al.  A well-posed hysteresis model for flows in porous media and applications to fingering effects , 2010 .

[10]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[11]  Hartmut Löwen,et al.  Derivation of the phase-field-crystal model for colloidal solidification. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  D A Weitz,et al.  Grain Boundary Scars and Spherical Crystallography , 2003, Science.

[13]  Luca Giomi,et al.  Two-dimensional matter: order, curvature and defects , 2008, 0812.3064.

[14]  D. Nelson,et al.  Vortices on curved surfaces , 2010 .

[15]  A. R. Bausch,et al.  Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles , 2002, Science.

[16]  Axel Voigt,et al.  A Continuous Approach to Discrete Ordering on S2 , 2011, Multiscale Model. Simul..

[17]  Charles M. Elliott,et al.  Modeling and computation of two phase geometric biomembranes using surface finite elements , 2010, J. Comput. Phys..

[18]  Axel Voigt,et al.  AMDiS: adaptive multidimensional simulations , 2007 .

[19]  Martin Grant,et al.  Modeling elasticity in crystal growth. , 2001, Physical review letters.

[20]  A. Voigt,et al.  PDE's on surfaces---a diffuse interface approach , 2006 .

[21]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[22]  Q. Du,et al.  A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .

[23]  A. Klug,et al.  Physical principles in the construction of regular viruses. , 1962, Cold Spring Harbor symposia on quantitative biology.

[24]  I. Pagonabarraga,et al.  Colloidal Jamming at Interfaces: A Route to Fluid-Bicontinuous Gels , 2005, Science.

[25]  David Reguera,et al.  Viral self-assembly as a thermodynamic process. , 2002, Physical review letters.

[26]  Matthias Röger,et al.  On a Modified Conjecture of De Giorgi , 2006 .

[27]  Raluca E. Rusu An algorithm for the elastic flow of surfaces , 2005 .

[28]  David R Nelson,et al.  Virus shapes and buckling transitions in spherical shells. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[30]  Axel Voigt,et al.  Particles on curved surfaces: a dynamic approach by a phase-field-crystal model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[32]  E. D. Giorgi,et al.  Some remarks on Γ-convergence and least squares method , 1991 .