A Framework for Robust Subspace Learning

Many computer vision, signal processing and statistical problems can be posed as problems of learning low dimensional linear or multi-linear models. These models have been widely used for the representation of shape, appearance, motion, etc., in computer vision applications. Methods for learning linear models can be seen as a special case of subspace fitting. One draw-back of previous learning methods is that they are based on least squares estimation techniques and hence fail to account for “outliers” which are common in realistic training sets. We review previous approaches for making linear learning methods robust to outliers and present a new method that uses an intra-sample outlier process to account for pixel outliers. We develop the theory of Robust Subspace Learning (RSL) for linear models within a continuous optimization framework based on robust M-estimation. The framework applies to a variety of linear learning problems in computer vision including eigen-analysis and structure from motion. Several synthetic and natural examples are used to develop and illustrate the theory and applications of robust subspace learning in computer vision.

[1]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[2]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[3]  L. Mirsky SYMMETRIC GAUGE FUNCTIONS AND UNITARILY INVARIANT NORMS , 1960 .

[4]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[5]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[6]  J. Tukey,et al.  The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data , 1974 .

[7]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[8]  S. Zamir,et al.  Lower Rank Approximation of Matrices by Least Squares With Any Choice of Weights , 1979 .

[9]  J. Leeuw,et al.  Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .

[10]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[11]  N. Campbell Robust Procedures in Multivariate Analysis I: Robust Covariance Estimation , 1980 .

[12]  F. Ruymgaart A robust principal component analysis , 1981 .

[13]  E. Oja Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.

[14]  N. Campbell Robust Procedures in Multivariate Analysis II. Robust Canonical Variate Analysis , 1982 .

[15]  Gene H. Golub,et al.  Matrix computations , 1983 .

[16]  Brian Everitt,et al.  An Introduction to Latent Variable Models , 1984 .

[17]  R. Clarke,et al.  Theory and Applications of Correspondence Analysis , 1985 .

[18]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[19]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[20]  Stuart Geman,et al.  Statistical methods for tomographic image reconstruction , 1987 .

[21]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[22]  M. Greenacre Correspondence analysis of multivariate categorical data by weighted least-squares , 1988 .

[23]  F. Mosteller,et al.  Exploring Data Tables, Trends and Shapes. , 1988 .

[24]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics (Revised Edition) , 1999 .

[25]  L. Ammann Robust Principal Components , 1989 .

[26]  Terence D. Sanger,et al.  Optimal unsupervised learning in a single-layer linear feedforward neural network , 1989, Neural Networks.

[27]  Kurt Hornik,et al.  Neural networks and principal component analysis: Learning from examples without local minima , 1989, Neural Networks.

[28]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[29]  Kohji Fukunaga,et al.  Introduction to Statistical Pattern Recognition-Second Edition , 1990 .

[30]  D. Geiger,et al.  The outlier process (picture processing) , 1991, Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop.

[31]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[32]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[33]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .

[34]  Lei Xu,et al.  Least mean square error reconstruction principle for self-organizing neural-nets , 1993, Neural Networks.

[35]  Hiroshi Murase,et al.  Learning and recognition of 3D objects from appearance , 1993, [1993] Proceedings IEEE Workshop on Qualitative Vision.

[36]  W. Heiser,et al.  Resistant lower rank approximation of matrices by iterative majorization , 1994 .

[37]  W. James MacLean,et al.  Recovery of Egomotion and Segmentation of Independent Object Motion Using the EM Algorithm , 1994, BMVC.

[38]  Takeo Kanade,et al.  A Paraperspective Factorization Method for Shape and Motion Recovery , 1994, ECCV.

[39]  Andrzej Cichocki,et al.  Robust learning algorithm for blind separation of signals , 1994 .

[40]  Alan L. Yuille,et al.  Robust principal component analysis by self-organizing rules based on statistical physics approach , 1995, IEEE Trans. Neural Networks.

[41]  Juha Karhunen,et al.  Generalizations of principal component analysis, optimization problems, and neural networks , 1995, Neural Networks.

[42]  Harry Shum,et al.  Principal Component Analysis with Missing Data and Its Application to Polyhedral Object Modeling , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Sun-Yuan Kung,et al.  Principal Component Neural Networks: Theory and Applications , 1996 .

[44]  Pierre Comon,et al.  Independent component analysis, a survey of some algebraic methods , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[45]  Michael J. Black,et al.  On the unification of line processes , 1996 .

[46]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[47]  David J. Fleet,et al.  Learning parameterized models of image motion , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[48]  Zhengyou Zhang,et al.  Parameter estimation techniques: a tutorial with application to conic fitting , 1997, Image Vis. Comput..

[49]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[51]  Sam T. Roweis,et al.  EM Algorithms for PCA and SPCA , 1997, NIPS.

[52]  Michael J. Black,et al.  Eigentracking: Robust matching and tracking of objects using view - based representation , 1998 .

[53]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[54]  Peter Filzmoser,et al.  Robust Factorization of a Data Matrix , 1998, COMPSTAT.

[55]  Michael Isard,et al.  Active Contours , 2000, Springer London.

[56]  Takeo Kanade,et al.  A unified factorization algorithm for points, line segments and planes with uncertainty models , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[57]  Rajesh P. N. Rao,et al.  An optimal estimation approach to visual perception and learning , 1999, Vision Research.

[58]  José M. F. Moura,et al.  Factorization as a rank 1 problem , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[59]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interaction , 1999, ICVS.

[60]  Sheng-De Wang,et al.  Robust algorithms for principal component analysis , 1999, Pattern Recognit. Lett..

[61]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[62]  H. Goluba,et al.  Eigenvalue computation in the 20 th century Gene , 2000 .

[63]  G. Golub,et al.  Eigenvalue computation in the 20th century , 2000 .

[64]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[65]  Charles V. Stewart,et al.  Robust Computer Vision: An Interdisciplinary Challenge , 2000, Comput. Vis. Image Underst..

[66]  Shang-Hong Lai Robust Image Matching under Partial Occlusion and Spatially Varying Illumination Change , 2000, Comput. Vis. Image Underst..

[67]  Joshua B. Tenenbaum,et al.  Separating Style and Content with Bilinear Models , 2000, Neural Computation.

[68]  Michael J. Black,et al.  A framework for modeling the appearance of 3D articulated figures , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[69]  Michael J. Black,et al.  Dynamic coupled component analysis , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[70]  Michael J. Black,et al.  Robust principal component analysis for computer vision , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[71]  Andrew Zisserman,et al.  Multiple view geometry in computer visiond , 2001 .

[72]  Michael J. Black,et al.  Robust Principal Component Analysis for Computer Vision , 2001, ICCV.

[73]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[74]  Michael J. Black,et al.  Robust Parameterized Component Analysis Theory and Applications to 2D Facial Modeling , 2002, eccv 2002.

[75]  I. Jolliffe Principal Component Analysis , 2002 .

[76]  Michael J. Black,et al.  Robust Parameterized Component Analysis , 2002, ECCV.

[77]  Horst Bischof,et al.  A Robust PCA Algorithm for Building Representations from Panoramic Images , 2002, ECCV.

[78]  Yang Zhu INDEPENDENT COMPONENT ANALYSIS: A SURVEY , 2002 .

[79]  Azriel Rosenfeld,et al.  Robust regression methods for computer vision: A review , 1991, International Journal of Computer Vision.

[80]  Michael J. Black,et al.  On the unification of line processes, outlier rejection, and robust statistics with applications in early vision , 1996, International Journal of Computer Vision.

[81]  Daniel Snow,et al.  Determining Generative Models of Objects Under Varying Illumination: Shape and Albedo from Multiple Images Using SVD and Integrability , 1999, International Journal of Computer Vision.

[82]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[83]  P. Anandan,et al.  Factorization with Uncertainty , 2000, International Journal of Computer Vision.

[84]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[85]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[86]  Marc Pollefeys,et al.  Multiple view geometry , 2005 .

[87]  Hiroshi Murase,et al.  Visual learning and recognition of 3-d objects from appearance , 2005, International Journal of Computer Vision.