Alternative correction equations in the Jacobi-Davidson method

textabstractThe correction equation in the Jacobi-Davidson method is effective in a subspace orthogonal to the current eigenvector approximation, while for the continuation of the process only vectors orthogonal to the search subspace are of importance. Such a vector is obtained by orthogonalizing the (approximate) solution of the correction equation against the search subspace. As an alternative, a variant of the correction equation can be formulated that is restricted to the subspace orthogonal to the current search subspace. In this paper, we discuss the effectivity of this variant. Our investigation is also motivated by the fact that the restricted correction equation can be used for avoiding stagnation in case of defective eigenvalues. Moreover, this equation plays a key role in the inexact TRQ method cite{SYa98.

[1]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[2]  R. Morgan,et al.  Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices , 1986 .

[3]  J. Olsen,et al.  Passing the one-billion limit in full configuration-interaction (FCI) calculations , 1990 .

[4]  Iain S. Duff,et al.  Users' guide for the Harwell-Boeing sparse matrix collection (Release 1) , 1992 .

[5]  E. Desturler,et al.  Nested Krylov methods and preserving the orthogonality , 1993 .

[6]  Cornelis Vuik,et al.  GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..

[7]  Joke Blom,et al.  VLUGR3: a vectorizable adaptive grid solver for PDEs in 3D, Part I: algorithmic aspects and applications , 1994 .

[8]  Bernard Philippe,et al.  The Davidson Method , 1994, SIAM J. Sci. Comput..

[9]  J. Blom,et al.  VLUGR3: A vectorizable adaptive grid solver for PDEs in 3D. II. Code description , 1994 .

[10]  Y. Saad,et al.  Robust preconditioning of large, sparse, symmetric eigenvalue problems , 1995 .

[11]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[12]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[13]  Ronald B. Morgan,et al.  On restarting the Arnoldi method for large nonsymmetric eigenvalue problems , 1996, Math. Comput..

[14]  Jean-Luc Fattebert Une méthode numérique pour la résolution des problèmes aux valeurs propres liés au calcul de structure électronique moléculaire , 1997 .

[15]  D. Sorensen,et al.  A Truncated RQ Iteration for Large Scale Eigenvalue Calculations , 1998 .

[16]  Gerard L. G. Sleijpen,et al.  Accelerated Inexact Newton Schemes for Large Systems of Nonlinear Equations , 1998, SIAM J. Sci. Comput..

[17]  Axel Ruhe,et al.  Rational Krylov: A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils , 1998, SIAM J. Sci. Comput..

[18]  Kesheng Wu,et al.  Dynamic Thick Restarting of the Davidson, and the Implicitly Restarted Arnoldi Methods , 1998, SIAM J. Sci. Comput..

[19]  J. Descloux,et al.  Rayleigh quotient iteration, an old recipe for solving modern large-scale eigenvalue problems , 1998 .

[20]  Gerard L. G. Sleijpen,et al.  Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..

[21]  D. Sorensen TRUNCATED QZ METHODS FOR LARGE SCALE GENERALIZED EIGENVALUE PROBLEMS , 1998 .

[22]  E. Sturler,et al.  Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .

[23]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..