Some algorithms for total variation based image restoration

This paper deals with numerical schemes for image restoration. These schemes rely on a duality-based algorithm proposed in 1979 by Bermudez and Moreno, and on general minimization schemes recently developped by Y. Nesterov. Total variation regularization and smoothed total variation regularization are investigated. Algorithms are presented for such regularizations in image restoration. We prove the convergence of all the proposed schemes. We illustrate our study with numerous numerical examples, and we make comparisons between the different schemes presented in the paper. Our experiments are in favor of Bermudez-Moreno approach to get a fast approximation for smoothed total variation regularization, whereas Y. Nesterov.

[1]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[2]  A. Pazy,et al.  On the asymptotic behavior of iterates of nonexpansive mappings in Hilbert space , 1977 .

[3]  A. Bermúdez,et al.  Duality methods for solving variational inequalities , 1981 .

[4]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[5]  M. Shirosaki Another proof of the defect relation for moving targets , 1991 .

[6]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[7]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[8]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[9]  D. Dobson,et al.  Convergence of an Iterative Method for Total Variation Denoising , 1997 .

[10]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[11]  T. Chan,et al.  On the Convergence of the Lagged Diffusivity Fixed Point Method in Total Variation Image Restoration , 1999 .

[12]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[13]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[14]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[15]  Antonin Chambolle,et al.  A l1-Unified Variational Framework for Image Restoration , 2004, ECCV.

[16]  Patrick L. Combettes,et al.  Image restoration subject to a total variation constraint , 2004, IEEE Transactions on Image Processing.

[17]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[18]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[19]  Wotao Yin,et al.  Second-order Cone Programming Methods for Total Variation-Based Image Restoration , 2005, SIAM J. Sci. Comput..

[20]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[21]  Antonin Chambolle,et al.  Total Variation Minimization and a Class of Binary MRF Models , 2005, EMMCVPR.

[22]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[23]  Tony F. Chan,et al.  Image processing and analysis - variational, PDE, wavelet, and stochastic methods , 2005 .

[24]  Mila Nikolova,et al.  Efficient Minimization Methods of Mixed l2-l1 and l1-l1 Norms for Image Restoration , 2005, SIAM J. Sci. Comput..

[25]  Jérôme Darbon,et al.  Image Restoration with Discrete Constrained Total Variation Part I: Fast and Exact Optimization , 2006, Journal of Mathematical Imaging and Vision.

[26]  Guy Gilboa,et al.  Constrained and SNR-Based Solutions for TV-Hilbert Space Image Denoising , 2006, Journal of Mathematical Imaging and Vision.

[27]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[28]  Raymond H. Chan,et al.  The Equivalence of Half-Quadratic Minimization and the Gradient Linearization Iteration , 2007, IEEE Transactions on Image Processing.

[29]  Michael K. Ng,et al.  On Semismooth Newton’s Methods for Total Variation Minimization , 2007, Journal of Mathematical Imaging and Vision.

[30]  T. Chan,et al.  Fast dual minimization of the vectorial total variation norm and applications to color image processing , 2008 .

[31]  Andrés Almansa,et al.  A TV Based Restoration Model with Local Constraints , 2008, J. Sci. Comput..

[32]  Gilles Aubert,et al.  Efficient Schemes for Total Variation Minimization Under Constraints in Image Processing , 2009, SIAM J. Sci. Comput..

[33]  Jean-François Aujol,et al.  Irregular to Regular Sampling, Denoising, and Deconvolution , 2009, Multiscale Model. Simul..