Simultaneous fitting of Bayesian penalised quantile splines

Bayesian simultaneous estimation of nonparametric quantile curves is a challenging problem, requiring a flexible and robust data model whilst satisfying the monotonicity or noncrossing constraints on the quantiles. The pyramid quantile regression method for simultaneous linear quantile fitting is adapted for the spline regression setting. In high dimensional problems, the choice of the pyramid locations becomes crucial for a robust parameter estimation. The optimal pyramid locations are derived which then allows for an efficient adaptive block-update MCMC scheme to be proposed for posterior computation. Simulation studies show that the proposed method provides estimates with significantly smaller errors and better empirical coverage probability when compared to existing alternative approaches. The method is illustrated with three real applications.

[1]  Pin T. Ng,et al.  Quantile smoothing splines , 1994 .

[2]  Pin T. Ng,et al.  COBS: qualitatively constrained smoothing via linear programming , 1999, Comput. Stat..

[3]  Yanan Fan,et al.  Regression Adjustment for Noncrossing Bayesian Quantile Regression , 2015, 1502.01115.

[4]  David Ruppert,et al.  Local polynomial variance-function estimation , 1997 .

[5]  P. H. Garthwaite,et al.  Adaptive optimal scaling of Metropolis–Hastings algorithms using the Robbins–Monro process , 2010, 1006.3690.

[6]  B. Silverman,et al.  Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .

[7]  Roger Koenker,et al.  Economic Applications of Quantile Regression , 2002 .

[8]  J.-L. Dortet-Bernadet,et al.  On Bayesian quantile regression curve fitting via auxiliary variables , 2012, 1202.5883.

[9]  R. Kohn,et al.  Nonparametric regression using Bayesian variable selection , 1996 .

[10]  Yuguo Chen,et al.  Bayesian quantile regression with approximate likelihood , 2015, 1506.00834.

[11]  V. Chernozhukov,et al.  Massachusetts Institute of Technology Department of Economics Working Paper Series Improving Point and Interval Estimates of Monotone Functions by Rearrangement Improving Point and Interval Estimates of Monotone Functions by Rearrangement , 2022 .

[12]  Keming Yu,et al.  Automatic Bayesian quantile regression curve fitting , 2009, Stat. Comput..

[13]  Monica Pratesi,et al.  Nonparametric M-quantile regression using penalised splines , 2009 .

[14]  Y. Ye,et al.  A convergent algorithm for quantile regression with smoothing splines , 1995 .

[15]  Sebastiano Calvo,et al.  Estimating growth charts via nonparametric quantile regression: a practical framework with application in ecology , 2012, Environmental and Ecological Statistics.

[16]  Yun Yang,et al.  Joint Estimation of Quantile Planes Over Arbitrary Predictor Spaces , 2015, 1507.03130.

[17]  H B Valman,et al.  Serum immunoglobulin concentrations in preschool children measured by laser nephelometry: reference ranges for IgG, IgA, IgM. , 1983, Journal of clinical pathology.

[18]  Paul Thompson,et al.  Bayesian nonparametric quantile regression using splines , 2010, Comput. Stat. Data Anal..

[19]  H. Bondell,et al.  Noncrossing quantile regression curve estimation. , 2010, Biometrika.

[20]  Xuming He Quantile Curves without Crossing , 1997 .

[21]  B. Cade,et al.  Estimating effects of limiting factors with regression quantiles , 1999 .

[22]  Keming Yu,et al.  Bayesian quantile regression , 2001 .

[23]  B. Reich,et al.  Bayesian Quantile Regression for Censored Data , 2013, Biometrics.

[24]  M. Fuentes,et al.  Journal of the American Statistical Association Bayesian Spatial Quantile Regression Bayesian Spatial Quantile Regression , 2022 .

[25]  Stephen Portnoy,et al.  Censored Regression Quantiles , 2003 .

[26]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[27]  Holger Dette,et al.  Non‐crossing non‐parametric estimates of quantile curves , 2008 .

[28]  Hans Edner,et al.  Locally weighted least squares kernel regression and statistical evaluation of LIDAR measurements , 1996 .

[29]  Philip Smith,et al.  Knot selection for least-squares and penalized splines , 2013 .

[30]  Pin T. Ng,et al.  A fast and efficient implementation of qualitatively constrained quantile smoothing splines , 2007 .

[31]  A. Kottas,et al.  Bayesian Semiparametric Modelling in Quantile Regression , 2009 .

[32]  Robert West,et al.  Generalised Additive Models , 2012 .

[33]  R. Koenker Quantile Regression: Name Index , 2005 .

[34]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[35]  Stephen G. Walker,et al.  Quantile pyramids for Bayesian nonparametrics , 2009, 0902.4410.