Dynamic brittle crack propagation modeling using singular edge-based smoothed finite element method with local mesh rezoning

Abstract This paper presents an effective numerical approach for dynamic brittle crack growth problems implemented on singular edge-based smoothed finite element method (sES-FEM). Both the consistent and lumped mass matrices are developed for five-node crack-tip elements for dynamic cases and their effects are compared on the numerical results. Further, to minimize the energy introduced or dissipated during continuous mesh rezoning, a balance recovery method is utilized in the computation. The interaction integral method is used to evaluate mixed dynamic stress intensity factors. Several numerical examples are presented to demonstrate the accuracy and applicability of the present approach in modeling dynamic crack propagation. The numerical results are examined in detail by comparisons with analytical solutions or experimental results, which shows the effectiveness of present method.

[1]  P. Kerfriden,et al.  Minimum energy multiple crack propagation. Part I: Theory and state of the art review , 2017 .

[2]  H. Nguyen-Xuan,et al.  A novel singular ES-FEM for crack growth simulation , 2012 .

[3]  Stéphane Bordas,et al.  Smooth finite element methods: Convergence, accuracy and properties , 2008 .

[4]  T. Q. Bui,et al.  Accurate and efficient analysis of stationary and propagating crack problems by meshless methods , 2017 .

[5]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[6]  B. K. Mishra,et al.  Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM , 2013 .

[7]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[8]  Ted Belytschko,et al.  Smoothed nodal forces for improved dynamic crack propagation modeling in XFEM , 2010 .

[9]  Tong Earn Tay,et al.  An edge-based smoothed XFEM for fracture in composite materials , 2012, International Journal of Fracture.

[10]  Guirong Liu,et al.  An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order , 2013 .

[11]  Julien Réthoré,et al.  A stable numerical scheme for the finite element simulation of dynamic crack propagation with remeshing , 2004 .

[12]  G. Liu A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part I theory , 2010 .

[13]  R. D. Henshell,et al.  CRACK TIP FINITE ELEMENTS ARE UNNECESSARY , 1975 .

[14]  G. R. Liu,et al.  Development of a Software Package of Smoothed Finite Element Method (S-FEM) for Solid Mechanics Problems , 2020 .

[15]  Lei Chen,et al.  A singular ES-FEM for plastic fracture mechanics , 2011 .

[16]  Guirong Liu,et al.  A face‐based smoothed finite element method (FS‐FEM) for 3D linear and geometrically non‐linear solid mechanics problems using 4‐node tetrahedral elements , 2009 .

[17]  Guirong Liu,et al.  A three-dimensional ES-FEM for fracture mechanics problems in elastic solids , 2013 .

[18]  T. Anderson,et al.  Fracture mechanics - Fundamentals and applications , 2017 .

[19]  Guirong Liu,et al.  An effective fracture analysis method based on the virtual crack closure-integral technique implemented in CS-FEM , 2016 .

[20]  Tinh Quoc Bui,et al.  The singular edge-based smoothed finite element method for stationary dynamic crack problems in 2D elastic solids , 2012 .

[21]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[22]  T. Q. Bui,et al.  Extended finite element simulation of stationary dynamic cracks in piezoelectric solids under impact loading , 2012 .

[23]  G. R. Liu,et al.  On Smoothed Finite Element Methods , 2010 .

[24]  Lei Chen,et al.  A NOVEL GENERAL FORMULATION FOR SINGULAR STRESS FIELD USING THE ES-FEM METHOD FOR THE ANALYSIS OF MIXED-MODE CRACKS , 2010 .

[25]  J. F. Kalthoff Modes of dynamic shear failure in solids , 2000 .

[26]  Kunigal N. Shivakumar,et al.  An equivalent domain integral method in the two-dimensional analysis of mixed mode crack problems , 1990 .

[27]  Marc Duflot,et al.  Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..

[28]  Chuanzeng Zhang,et al.  Analysis of generalized dynamic intensity factors of cracked magnetoelectroelastic solids by X-FEM , 2013 .

[29]  Ignacio Iturrioz,et al.  Crack propagation in elastic solids using the truss-like discrete element method , 2012, International Journal of Fracture.

[30]  T. Rabczuk,et al.  Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment , 2008 .

[31]  Glaucio H. Paulino,et al.  Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method , 2006 .

[32]  Guirong Liu,et al.  A novel singular ES-FEM method for simulating singular stress fields near the crack tips for linear fracture problems , 2011 .

[33]  Stéphane Bordas,et al.  Virtual and smoothed finite elements: A connection and its application to polygonal/polyhedral finite element methods , 2015 .

[34]  Vinh Phu Nguyen,et al.  Phase-field modeling of fracture , 2019 .

[35]  K. Y. Dai,et al.  A Smoothed Finite Element Method for Mechanics Problems , 2007 .

[36]  Hung Nguyen-Xuan,et al.  A Phantom-Node Method with Edge-Based Strain Smoothing for Linear Elastic Fracture Mechanics , 2013, J. Appl. Math..

[37]  Lei Chen,et al.  Extended finite element method coupled with face‐based strain smoothing technique for three‐dimensional fracture problems , 2015 .

[38]  Xu Han,et al.  An edge-based/node-based selective smoothed finite element method using tetrahedrons for cardiovascular tissues , 2015 .

[39]  G. Liu A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part II applications to solid mechanics problems , 2010 .

[40]  Eleni Chatzi,et al.  Multiple crack detection in 3D using a stable XFEM and global optimization , 2018, Computational Mechanics.

[41]  P. Kerfriden,et al.  Minimum energy multiple crack propagation. Part-II: Discrete solution with XFEM , 2017 .

[42]  R. Barsoum On the use of isoparametric finite elements in linear fracture mechanics , 1976 .

[43]  Tinh Quoc Bui,et al.  Edge-based smoothed extended finite element method for dynamic fracture analysis , 2016 .

[44]  John W. Hutchinson,et al.  Dynamic Fracture Mechanics , 1990 .

[45]  T. Rabczuk,et al.  A meshfree thin shell method for non‐linear dynamic fracture , 2007 .

[46]  Lei Chen,et al.  A singular edge-based smoothed finite element method (ES-FEM) for bimaterial interface cracks , 2009 .

[47]  Pierre Kerfriden,et al.  Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications , 2017 .

[48]  Christian Miehe,et al.  Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation , 2012, International Journal of Fracture.

[49]  T. Liszka,et al.  A generalized finite element method for the simulation of three-dimensional dynamic crack propagation , 2001 .

[50]  Guirong Liu,et al.  Smoothed Point Interpolation Methods: G Space Theory and Weakened Weak Forms , 2013 .

[51]  Guirong Liu,et al.  An edge-based smoothed finite element method softened with a bubble function (bES-FEM) for solid mechanics problems , 2013 .

[52]  Ted Belytschko,et al.  Cracking node method for dynamic fracture with finite elements , 2009 .

[53]  Lei Chen,et al.  A singular edge-based smoothed finite element method (ES-FEM) for crack analyses in anisotropic media , 2011 .

[54]  Guirong Liu,et al.  An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids , 2009 .

[55]  Guirong Liu,et al.  A novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements , 2008 .

[56]  M. Rashid The arbitrary local mesh replacement method: An alternative to remeshing for crack propagation analysis , 1998 .

[57]  G. R. Liu,et al.  Proofs of the stability and convergence of a weakened weak method using PIM shape functions , 2016, Comput. Math. Appl..

[58]  Stéphane Bordas,et al.  Strain smoothing in FEM and XFEM , 2010 .

[59]  Gui-Rong Liu,et al.  An Overview on Meshfree Methods: For Computational Solid Mechanics , 2016 .

[60]  Pierre Kerfriden,et al.  Strain smoothing for compressible and nearly-incompressible finite elasticity , 2017 .

[61]  Mirco Zaccariotto,et al.  Crack propagation with adaptive grid refinement in 2D peridynamics , 2014, International Journal of Fracture.

[62]  T. Belytschko,et al.  Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment , 2003 .

[63]  Tinh Quoc Bui,et al.  A fictitious crack XFEM with two new solution algorithms for cohesive crack growth modeling in concrete structures , 2015 .

[64]  Ted Belytschko,et al.  Time dependent crack tip enrichment for dynamic crack propagation , 2010 .

[65]  Hubert Maigre,et al.  An explicit dynamics extended finite element method. Part 1: Mass lumping for arbitrary enrichment functions , 2009 .

[66]  Julien Réthoré,et al.  Efficient explicit time stepping for the eXtended Finite Element Method (X‐FEM) , 2006 .

[67]  Guirong Liu,et al.  Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth , 2012 .

[68]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[69]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[70]  Bijay K. Mishra,et al.  New enrichments in XFEM to model dynamic crack response of 2-D elastic solids , 2016 .

[71]  T. Belytschko,et al.  A three dimensional large deformation meshfree method for arbitrary evolving cracks , 2007 .

[72]  Tinh Quoc Bui,et al.  Transient dynamic fracture analysis by an extended meshfree method with different crack-tip enrichments , 2017 .

[73]  Gui-Rong Liu,et al.  Simulation of thermoelastic crack problems using singular edge-based smoothed finite element method , 2016 .

[74]  Masahiro Kinoshita,et al.  Dynamic fracture-path prediction in impact fracture phenomena using moving finite element method based on Delaunay automatic mesh generation , 2001 .

[75]  Christian Miehe,et al.  A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns , 2013 .

[76]  Ted Belytschko,et al.  THE ELEMENT FREE GALERKIN METHOD FOR DYNAMIC PROPAGATION OF ARBITRARY 3-D CRACKS , 1999 .

[77]  Gui-Rong Liu,et al.  The Finite Element Method , 2007 .

[78]  Brian Moran,et al.  Crack tip and associated domain integrals from momentum and energy balance , 1987 .

[79]  Hubert Maigre,et al.  Dynamic crack propagation under mixed-mode loading – Comparison between experiments and X-FEM simulations , 2007 .

[80]  Chuanzeng Zhang,et al.  Crack growth modeling in elastic solids by the extended meshfree Galerkin radial point interpolation method , 2014 .

[81]  Julien Réthoré,et al.  An energy‐conserving scheme for dynamic crack growth using the eXtended finite element method , 2005 .

[82]  Gui-Rong Liu,et al.  A quasi‐static crack growth simulation based on the singular ES‐FEM , 2011 .

[83]  Guirong Liu,et al.  A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems , 2009 .

[84]  T. Rabczuk,et al.  A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics , 2007 .

[85]  Hubert Maigre,et al.  An explicit dynamics extended finite element method. Part 2: Element-by-element stable-explicit/explicit dynamic scheme , 2009 .

[86]  Li Ma,et al.  Dynamic stress intensity factors for homogeneous and non-homogeneous materials using the interaction integral method , 2014 .

[87]  Stéphane Bordas,et al.  On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM) , 2011 .

[88]  Jean-François Remacle,et al.  Application of the substructured finite element/extended finite element method (S-FE/XFE) to the analysis of cracks in aircraft thin walled structures , 2009 .

[89]  Trung Nguyen-Thoi,et al.  A generalized beta finite element method with coupled smoothing techniques for solid mechanics , 2016 .

[90]  Lei Chen,et al.  A COMBINED EXTENDED AND EDGE-BASED SMOOTHED FINITE ELEMENT METHOD (ES-XFEM) FOR FRACTURE ANALYSIS OF 2D ELASTICITY , 2011 .

[91]  Jin Wu,et al.  Development of the DYNA3D simulation code with automated fracture procedure for brick elements , 2003 .

[92]  Guiyong Zhang,et al.  A novel singular node‐based smoothed finite element method (NS‐FEM) for upper bound solutions of fracture problems , 2010 .

[93]  Stéphane Bordas,et al.  Linear smoothed polygonal and polyhedral finite elements , 2017 .

[94]  Stéphane Bordas,et al.  Error-controlled adaptive extended finite element method for 3D linear elastic crack propagation , 2017 .

[95]  Gui-Rong Liu,et al.  The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired solutions , 2019, Frontiers of Structural and Civil Engineering.

[96]  Lin-zhi Wu,et al.  Investigation of mixed-mode stress intensity factors for nonhomogeneous materials using an interaction integral method , 2009 .

[97]  Marc Duflot,et al.  Derivative recovery and a posteriori error estimate for extended finite elements , 2007 .

[98]  Ted Belytschko,et al.  Element-free Galerkin methods for dynamic fracture in concrete , 2000 .

[99]  T. Belytschko,et al.  Element-free galerkin methods for static and dynamic fracture , 1995 .

[100]  Thomas M. Michelitsch,et al.  A note on the formula for the Rayleigh wave speed , 2006 .

[101]  Guirong Liu,et al.  Smoothed Finite Element Methods (S-FEM): An Overview and Recent Developments , 2018 .