Efficient syntheses of pillar[6]arene-based hetero[4]rotaxanes using a cooperative capture strategy.

While a single pillar[6]arene ring, nestling between two cucurbit[6]uril rings in a series of three hetero[4]rotaxanes, is conformationally mobile in solution, it adopts the energetically most favourable conformation with local C3V symmetry in the solid state.

[1]  J. Fraser Stoddart,et al.  Cyclodextrin-Based Catenanes and Rotaxanes. , 1998, Chemical reviews.

[2]  P. Zavalij,et al.  Supramolecular ladders from dimeric cucurbit[6]uril. , 2013, Angewandte Chemie.

[3]  Xiao‐Yu Hu,et al.  A novel redox-responsive pillar[6]arene-based inclusion complex with a ferrocenium guest. , 2013, Chemical communications.

[4]  J. F. Stoddart,et al.  Efficient production of [n]rotaxanes by using template-directed clipping reactions , 2007, Proceedings of the National Academy of Sciences.

[5]  S. Fujinami,et al.  Facile, rapid, and high-yield synthesis of pillar[5]arene from commercially available reagents and its X-ray crystal structure. , 2011, The Journal of organic chemistry.

[6]  G. Lanzani,et al.  Amplified Spontaneous Emission in Conjugated Polyrotaxanes Under Quasi‐cw Pumping , 2013, Advanced materials.

[7]  T. Ogoshi,et al.  Polypseudorotaxane Constructed from Pillar[5]arene and Viologen Polymer , 2010 .

[8]  W. Marsden I and J , 2012 .

[9]  D. Tuncel,et al.  Supramolecular Assemblies Constructed by Cucurbituril‐Catalyzed Click Reaction , 2011 .

[10]  Michael Famulok,et al.  A double-stranded DNA rotaxane. , 2010, Nature nanotechnology.

[11]  Yoshiaki Nakamoto,et al.  para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. , 2008, Journal of the American Chemical Society.

[12]  Feihe Huang,et al.  A pillar[6]arene with mono(ethylene oxide) substituents: synthesis and complexation with diquat. , 2013, Chemical communications.

[13]  Akira Harada,et al.  Macroscopic self-assembly through molecular recognition. , 2011, Nature chemistry.

[14]  J. F. Stoddart,et al.  The Slipping Approach to Self-Assembling [n]Rotaxanes† , 1997 .

[15]  Masao Kawai,et al.  Sequential formation of a ternary complex among dihexylammonium, cucurbit[6]uril, and cyclodextrin with positive cooperativity. , 2006, Organic letters.

[16]  Yu Liu,et al.  Dual supramolecular photochirogenesis: ultimate stereocontrol of photocyclodimerization by a chiral scaffold and confining host. , 2011, Journal of the American Chemical Society.

[17]  Y. Ko,et al.  Dynamic switching between single- and double-axial rotaxanes manipulated by charge and bulkiness of axle termini. , 2007, Organic letters.

[18]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.

[19]  T. Ogoshi,et al.  New Synthetic Host Pillararenes : Their Synthesis and Application to Supramolecular Materials , 2013 .

[20]  H. Anderson,et al.  Homo- and hetero-[3]rotaxanes with two pi-systems clasped in a single macrocycle. , 2006, Journal of the American Chemical Society.

[21]  Y. Takashima,et al.  Artificial molecular clamp: a novel device for synthetic polymerases. , 2011, Angewandte Chemie.

[22]  R. Grubbs,et al.  Magic ring rotaxanes by olefin metathesis. , 2003, Angewandte Chemie.

[23]  Yanli Zhao,et al.  Pillararene-based assemblies: design principle, preparation and applications. , 2013, Chemistry.

[24]  Young Ho Ko,et al.  Functionalized cucurbiturils and their applications. , 2007, Chemical Society reviews.

[25]  T. Ogoshi,et al.  Diastereoselective synthesis of a [2]catenane from a pillar[5]arene and a pyridinium derivative. , 2014, Chemical communications.

[26]  Chunju Li,et al.  Complex interactions of pillar[5]arene with paraquats and bis(pyridinium) derivatives. , 2010, Organic & biomolecular chemistry.

[27]  S. Inagi,et al.  Reduction of Emeraldine Base Form of Polyaniline by Pillar[5]arene Based on Formation of Poly(pseudorotaxane) Structure , 2011 .

[28]  Y. Takashima,et al.  Ring-opening polymerization of cyclic esters by cyclodextrins. , 2008, Accounts of chemical research.

[29]  Ying-Wei Yang,et al.  One-pot synthesis of pillar[n]arenes catalyzed by a minimum amount of TfOH and a solution-phase mechanistic study. , 2012, Organic & biomolecular chemistry.

[30]  T. Ogoshi,et al.  Diastereoselective synthesis of meso-pillar[6]arenes by bridging between hydroquinone units in an alternating up-and-down manner. , 2013, Chemical communications.

[31]  Kimoon Kim,et al.  Cucurbit[6]uril: organic molecular porous material with permanent porosity, exceptional stability, and acetylene sorption properties. , 2008, Angewandte Chemie.

[32]  J. F. Stoddart,et al.  Incorporation of an A1/A2-difunctionalized pillar[5]arene into a metal-organic framework. , 2012, Journal of the American Chemical Society.

[33]  S. Fujinami,et al.  Clickable di- and tetrafunctionalized pillar[n]arenes (n = 5, 6) by oxidation-reduction of pillar[n]arene units. , 2012, The Journal of organic chemistry.

[34]  Pierre Gaspard,et al.  From non-covalent assemblies to molecular machines , 2010 .

[35]  Feihe Huang,et al.  A water-soluble pillar[6]arene: synthesis, host-guest chemistry, and its application in dispersion of multiwalled carbon nanotubes in water. , 2012, Journal of the American Chemical Society.

[36]  R. Eelkema,et al.  Radical cation stabilization in a cucurbituril oligoaniline rotaxane. , 2007, Journal of the American Chemical Society.

[37]  C. Park,et al.  Free-standing, single-monomer-thick two-dimensional polymers through covalent self-assembly in solution. , 2013, Journal of the American Chemical Society.

[38]  A. Harada,et al.  Cyclodextrin-based molecular machines. , 2001, Accounts of chemical research.

[39]  Akira Harada,et al.  Redox-responsive self-healing materials formed from host–guest polymers , 2011, Nature communications.

[40]  Feihe Huang,et al.  Pillar[6]arene/paraquat molecular recognition in water: high binding strength, pH-responsiveness, and application in controllable self-assembly, controlled release, and treatment of paraquat poisoning. , 2012, Journal of the American Chemical Society.

[41]  Jean-Pierre Sauvage,et al.  Molecular catenanes, rotaxanes and knots : A journey through the world of molecular topology , 1999 .

[42]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[43]  W. L. Mock,et al.  Catalysis by cucurbituril. The significance of bound-substrate destabilization for induced triazole formation , 1989 .

[44]  T. Ogoshi,et al.  Photoreversible switching of the lower critical solution temperature in a photoresponsive host-guest system of pillar[6]arene with triethylene oxide substituents and an azobenzene derivative. , 2012, Journal of the American Chemical Society.

[45]  Lingyun Wang,et al.  Synthesis and host-guest properties of pillar[6]arenes , 2012, Science China Chemistry.

[46]  J. Szejtli Introduction and General Overview of Cyclodextrin Chemistry. , 1998, Chemical reviews.

[47]  Chris Toprakcioglu,et al.  Photocontrol over cucurbit[8]uril complexes: stoichiometry and supramolecular polymers. , 2013, Journal of the American Chemical Society.

[48]  Chuyang Cheng,et al.  Pillar[5]arene as a co-factor in templating rotaxane formation. , 2013, Journal of the American Chemical Society.

[49]  N. Mizuno,et al.  Cucurbit[n]uril-polyoxoanion hybrids. , 2009, Journal of the American Chemical Society.

[50]  C. Tanford Macromolecules , 1994, Nature.

[51]  K. Ito,et al.  The Polyrotaxane Gel: A Topological Gel by Figure‐of‐Eight Cross‐links , 2001 .

[52]  F. Cacialli,et al.  Highly Polarized Emission from Oriented Films Incorporating Water‐Soluble Conjugated Polymers in a Polyvinyl Alcohol Matrix , 2011, Advanced materials.

[53]  Oren A Scherman,et al.  Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. , 2012, Journal of the American Chemical Society.

[54]  J. F. Stoddart,et al.  Mechanically Interlocked Molecules Assembled by π–π Recognition , 2012 .

[55]  J. W. Ward,et al.  Sequence-Specific Peptide Synthesis by an Artificial Small-Molecule Machine , 2013, Science.

[56]  T. Ogoshi,et al.  Solvent- and achiral-guest-triggered chiral inversion in a planar chiral pseudo[1]catenane. , 2013, Angewandte Chemie.

[57]  H. Anderson,et al.  A cyclodextrin-insulated anthracene rotaxane with enhanced fluorescence and photostability. , 2007, Chemical communications.

[58]  Akira Harada,et al.  Cyclodextrin-based supramolecular polymers. , 2009, Chemical Society reviews.

[59]  T. Ogoshi,et al.  Effect of an Intramolecular Hydrogen Bond Belt and Complexation with the Guest on the Rotation Behavior of Phenolic Units in Pillar[5]arenes , 2010 .

[60]  T. Ogoshi,et al.  Thermally responsive shuttling behavior of a pillar[6]arene-based [2]rotaxane. , 2012, Chemical communications.

[61]  J. F. Stoddart,et al.  Interface‐Engineered Bistable [2]Rotaxane‐Graphene Hybrids with Logic Capabilities , 2013, Advanced materials.

[62]  Feihe Huang,et al.  per-Hydroxylated pillar[6]arene: synthesis, X-ray crystal structure, and host-guest complexation. , 2012, Organic letters.

[63]  W. L. Mock,et al.  Cycloaddition induced by cucurbituril. A case of Pauling principle catalysis , 1983 .

[64]  T. Ogoshi,et al.  Synthesis of novel pillar-shaped cavitands “Pillar[5]arenes” and their application for supramolecular materials , 2012, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[65]  Lingyun Wang,et al.  A facile and efficient preparation of pillararenes and a pillarquinone. , 2009, Angewandte Chemie.

[66]  T. Ogoshi,et al.  Photoreversible transformation between seconds and hours time-scales: threading of pillar[5]arene onto the azobenzene-end of a viologen derivative. , 2011, The Journal of organic chemistry.

[67]  T. Ogoshi,et al.  High Yield Synthesis of Polyrotaxane Constructed from Pillar[5]arene and Viologen Polymer and Stabilization of Its Radical Cation , 2010 .

[68]  K. Sharma,et al.  Pillar[5]arenes: fascinating cyclophanes with a bright future. , 2012, Chemical Society reviews.

[69]  Alexander Heckel,et al.  Construction of a structurally defined double-stranded DNA catenane. , 2011, Nano letters.

[70]  Hao Li,et al.  Quantitative emergence of hetero[4]rotaxanes by template-directed click chemistry. , 2013, Angewandte Chemie.

[71]  Feihe Huang,et al.  Synthesis of a Difunctionalized Pillar[6]arene and Its Complexation with an Ammonium Salt Coupled to a Weakly Coordinating Counteranion , 2013 .

[72]  H. Deng,et al.  Charge-transfer inclusion complex formation of tropylium cation with pillar[6]arenes. , 2013, Chemical communications.

[73]  Jae Wook Lee,et al.  Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. , 2003, Accounts of chemical research.

[74]  J. F. Stoddart,et al.  Dynamic hook-and-eye nanoparticle sponges. , 2009, Nature chemistry.

[75]  David A Leigh,et al.  Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. , 2009, Chemical Society reviews.

[76]  Yong Yang,et al.  Pillararenes, a new class of macrocycles for supramolecular chemistry. , 2012, Accounts of chemical research.

[77]  Wei Chen,et al.  Synthesis of a cationic water-soluble pillar[6]arene and its effective complexation towards naphthalenesulfonate guests. , 2013, Chemical communications.

[78]  Lyle Isaacs,et al.  The cucurbit[n]uril family. , 2005, Angewandte Chemie.

[79]  H. Anderson,et al.  Insulated molecular wires. , 2007, Angewandte Chemie.

[80]  Y. Inoue,et al.  Complexation Thermodynamics of Cyclodextrins. , 1998, Chemical reviews.

[81]  Courtney R. Thomas,et al.  Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. , 2011, Accounts of chemical research.

[82]  J. Steinke,et al.  Catalytically self-threading polyrotaxanes , 1999 .