Heterogeneous Silicon/III–V Semiconductor Optical Amplifiers

We report high output power and high-gain semiconductor optical amplifiers integrated on a heterogeneous silicon/III-V photonics platform. The devices produce 25 dB of unsaturated gain for the highest gain design, and 14 dBm of saturated output power for the highest output power design. The amplifier structure is also suitable for lasers, and can be readily integrated with a multitude of silicon photonic circuit components. These devices are useful for a wide range of photonic integrated circuits. We show a design method for optimizing the amplifier for the desired characteristics. The amplifier incorporates a low loss and low reflection transition between the heterogeneous active region and a silicon waveguide, and we report transition loss below 1 dB across the entire measurement range and parasitic reflection coefficient from the transition below 1 · 10-3.

[1]  Empirical modeling of the refractive index for (AlGaIn)As lattice matched to InP , 2010 .

[2]  J. Bowers,et al.  Characterization of a hybrid silicon-InP laser tapered mode converter , 2013, CLEO: 2013.

[3]  A. Yariv,et al.  Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: A proposal and analysis. , 2007, Optics express.

[4]  J. Barton,et al.  Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers , 2000, IEEE Photonics Technology Letters.

[5]  Michael Hochberg,et al.  Towards fabless silicon photonics , 2010 .

[6]  John E. Bowers,et al.  High gain-bandwidth-product silicon heterointerface photodetector , 1997 .

[7]  Hyundai Park,et al.  A Hybrid AlGaInAs–Silicon Evanescent Amplifier , 2007, IEEE Photonics Technology Letters.

[8]  James S. Speck,et al.  High-power blue laser diodes with indium tin oxide cladding on semipolar (202¯1¯) GaN substrates , 2015 .

[9]  Michael R. Watts,et al.  Large-scale nanophotonic phased array , 2013, Nature.

[10]  Mehrdad Ziari,et al.  Large-Scale Photonic Integrated Circuit Transmitters with Monolithically Integrated Semiconductor Optical Amplifiers , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[11]  A. Kuramata,et al.  A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure , 2005, IEEE Photonics Technology Letters.

[12]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[13]  D. Thomson,et al.  Hybrid III--V on Silicon Lasers for Photonic Integrated Circuits on Silicon , 2014 .

[14]  P. Pintus,et al.  Characterization of Insertion Loss and Back Reflection in Passive Hybrid Silicon Tapers , 2013, IEEE Photonics Journal.

[15]  Takuro Fujii,et al.  Directly modulated buried heterostructure DFB laser on SiO₂/Si substrate fabricated by regrowth of InP using bonded active layer. , 2014, Optics express.

[16]  D. Guckenberger,et al.  Silicon photonic integrated circuits , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[17]  Assia Barkai,et al.  Integrated hybrid silicon triplexer. , 2010, Optics express.

[18]  S. Brision,et al.  Electrically driven hybrid Si/III-V lasers based on adiabatic mode transformers , 2010, Photonics Europe.

[19]  G. Landgren,et al.  Ellipsometric determination of thickness and refractive index at 1.3, 1.55, and 1.7 μm for In(1-x)GaxAsyP(1-y) films on InP , 1993 .

[20]  M. O'Mahony Semiconductor laser optical amplifiers for use in future fiber systems , 1988 .

[21]  V.W.S. Chan,et al.  Free-Space Optical Communications , 2006, Journal of Lightwave Technology.

[22]  S. L. Danielsen,et al.  All-optical wavelength conversion by semiconductor optical amplifiers , 1996 .

[23]  L. Coldren,et al.  Fully integrated hybrid silicon two dimensional beam scanner. , 2015, Optics express.

[24]  Syouichi Kakimoto Intervalence band absorption loss coefficients of the active layer for InGaAs/InGaAsP multiple quantum well laser diodes , 2002 .

[25]  Di Liang,et al.  A Distributed Bragg Reflector Silicon Evanescent Laser , 2008, IEEE Photonics Technology Letters.

[26]  J. Bowers,et al.  Hybrid Silicon Photonic Integrated Circuit Technology , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  Hossein Hashemi,et al.  Monolithic optical phased-array transceiver in a standard SOI CMOS process. , 2015, Optics express.

[28]  J. Bowers,et al.  Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser. , 2007, Optics express.

[29]  M. Moehrle Hydrogen passivation of Zn acceptors in InGaAs during reactive ion etching , 1990 .

[30]  Kuanping Shang,et al.  Highly efficient chip-scale III-V/silicon hybrid optical amplifiers. , 2015, Optics express.

[31]  J. E. Bowers,et al.  An Integrated Hybrid Silicon Multiwavelength AWG Laser , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[32]  Hark Hoe Tan,et al.  Electrical isolation of n -type and p -type InP layers by proton bombardment , 2001 .

[33]  P. Verheyen,et al.  III-V-on-silicon anti-colliding pulse-type mode-locked laser. , 2015, Optics letters.

[34]  Daniel T. Cassidy,et al.  Technique for measurement of the gain spectra of semiconductor diode lasers , 1984 .

[35]  M.R. Islam,et al.  Refractive Index, Absorption Coefficient, and Photoelastic Constant: Key Parameters of InGaAs Material Relevant to InGaAs-Based Device Performance , 2007, 2007 IEEE 19th International Conference on Indium Phosphide & Related Materials.

[36]  V. A. Shishkin,et al.  SEM evidence for near-surface carrier passivation by hydrogen in CH4/H2 reactive ion etched p-InP , 1995 .

[37]  Ying-Hao Kuo,et al.  A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector. , 2007, Optics express.

[38]  David Chapman,et al.  Uniformity study of wafer-scale InP-to-silicon hybrid integration , 2011 .

[39]  R. W. Glew,et al.  Intervalence band absorption in strained and unstrained InGaAs multiple quantum well structures , 1992 .

[40]  M. Lamponi,et al.  A highly efficient electrically pumped optical amplifier integrated on a SOI waveguide circuit , 2012, The 9th International Conference on Group IV Photonics (GFP).

[41]  C. Doerr,et al.  Silicon photonic integration in telecommunications , 2015, Front. Phys..

[42]  Guilhem de Valicourt,et al.  Hybrid III-V/Silicon SOA in Optical Network Based on Advanced Modulation Formats , 2015, IEEE Photonics Technology Letters.

[43]  H. C. Casey,et al.  Variation of intervalence band absorption with hole concentration in p‐type InP , 1984 .

[44]  David F. Welch,et al.  Monolithic, 10 and 40 Channel InP Receiver Photonic Integrated Circuits with On-Chip Amplification , 2007, OFC 2007.

[45]  van der Jjgm Jos Tol,et al.  Moore's law in photonics , 2012 .

[46]  E. Kapon,et al.  Low-loss III-V semiconductor optical waveguides , 1991 .

[47]  van Pj René Veldhoven,et al.  Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate , 2013 .