BIODEGRADABLE ORTHOPEDIC IMPLANT: FABRICATION AND EVALUATION

Osteomyelitis is one of the most serious complications of the orthopedic open fracture treatment. Prolonged release local antibiotic therapy has been taken into consideration due to side effects encountered in long term high‐dose antibiotic use and the duration of hospitalization of the patients. This study was aimed to develop a biodegradable orthopedic implant that is able to rele ase the drug for atleast six weeks at a concentration above the Minimum Inhibitory Concentration. Polylactide‐co‐glycolide (PLGA) and polycaprolactone(PCL) were used as the biodegradable carrier systems, whereas gatifloxacin as the antibiotic. Gatifloxacin is an effective new broad‐spectrum floroquinolone with antibacterial activity. Gatifloxacin is indicated for the treatment of most of the tissue infections like osteomyelitis. The implants were prepared by injection molding method. The polymers were dissolved in a solvent and the drug was added with continuous stirring. This drug mixed polymer solution was then filled in syringe and forced into a mould cavity by applying pressure to the syringe. The implants were evaluated for dimensional analysis, hardness, drug content, content uniformity, sterility, in‐vitro drug release and surface characteristics of formulated beads before and after release. The implants showed hardness of 8.47 kg/cm2, drug content of 97.4%, and content uniformity. The implants released 91% of drug over a time period of 55 days. Thus promising results were shown by the implants and can be used in treatment of osteomyelitis.

[1]  C. Sancineto,et al.  Treatment of long bone osteomyelitis with a mechanically stable intramedullar antibiotic dispenser: nineteen consecutive cases with a minimum of 12 months follow-up. , 2008, The Journal of trauma.

[2]  N. Haas,et al.  Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. , 2006, Injury.

[3]  A. Hanssen Local antibiotic delivery vehicles in the treatment of musculoskeletal infection. , 2005, Clinical orthopaedics and related research.

[4]  Xiu-lan Li,et al.  Fabrication of calcium sulfate/PLLA composite for bone repair. , 2005, Journal of biomedical materials research. Part A.

[5]  J. Hanker,et al.  The use of particulate hydroxyapatite and plaster of Paris in aesthetic and reconstructive surgery , 1994, Aesthetic Plastic Surgery.

[6]  S. Gitelis,et al.  The Treatment of Chronic Osteomyelitis with a Biodegradable Antibiotic-Impregnated Implant , 2002, Journal of orthopaedic surgery.

[7]  T Ushida,et al.  Poly(DL-lactic-co-glycolic acid) sponge hybridized with collagen microsponges and deposited apatite particulates. , 2001, Journal of biomedical materials research.

[8]  J. Tanaka,et al.  Preparation of porous composite implant materials by in situ polymerization of porous apatite containing ε-caprolactone or methyl methacrylate , 2001 .

[9]  D. Bakoš,et al.  Hydroxyapatite-collagen-hyaluronic acid composite. , 1999, Biomaterials.

[10]  T. Koshino,et al.  Osteogenic response of rabbit tibia to hydroxyapatite particle-Plaster of Paris mixture. , 1998, Biomaterials.

[11]  J. Planell,et al.  Effect of calcium carbonate on the compliance of an apatitic calcium phosphate bone cement. , 1997, Biomaterials.

[12]  Y. Ikada,et al.  Polymer-hydroxyapatite composites for biodegradable bone fillers. , 1986, Biomaterials.

[13]  A. Coetzee Regeneration of bone in the presence of calcium sulfate. , 1980, Archives of otolaryngology.