Nonlinear Component Analysis as a Kernel Eigenvalue Problem
暂无分享,去创建一个
Bernhard Schölkopf | Alexander J. Smola | Klaus-Robert Müller | B. Schölkopf | K. Müller | Alex Smola | B. Scholkopf
[1] K. Karhunen. Zur Spektraltheorie stochastischer prozesse , 1946 .
[2] R. Courant,et al. Methods of Mathematical Physics , 1962 .
[3] R. Courant,et al. Methods of Mathematical Physics, Vol. I , 1954 .
[4] M. Aizerman,et al. Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .
[5] R. Courant. Methods of mathematical physics, Volume I , 1965 .
[6] Shun-ichi Amari,et al. A Theory of Pattern Recognition , 1968 .
[7] N. S. Barnett,et al. Private communication , 1969 .
[8] G. Reuter. LINEAR OPERATORS PART II (SPECTRAL THEORY) , 1969 .
[9] W. N. Wapnik,et al. Theorie der Zeichenerkennung , 1979 .
[10] E. Oja. Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.
[11] J. Friedman. Exploratory Projection Pursuit , 1987 .
[12] Lawrence D. Jackel,et al. Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.
[13] Lawrence Sirovich,et al. Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[14] Christian Jutten,et al. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..
[15] M. Turk,et al. Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.
[16] Léon Bottou,et al. Local Learning Algorithms , 1992, Neural Computation.
[17] Bernhard E. Boser,et al. A training algorithm for optimal margin classifiers , 1992, COLT '92.
[18] Yann LeCun,et al. Efficient Pattern Recognition Using a New Transformation Distance , 1992, NIPS.
[19] Stephen M. Omohundro,et al. Surface Learning with Applications to Lipreading , 1993, NIPS.
[20] R. Tibshirani,et al. Flexible Discriminant Analysis by Optimal Scoring , 1994 .
[21] Terrence J. Sejnowski,et al. An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.
[22] S. Klinke,et al. Exploratory Projection Pursuit , 1995 .
[23] Bernhard Schölkopf,et al. Extracting Support Data for a Given Task , 1995, KDD.
[24] Christopher J. C. Burges,et al. Simplified Support Vector Decision Rules , 1996, ICML.
[25] Sun-Yuan Kung,et al. Principal Component Neural Networks: Theory and Applications , 1996 .
[26] Bernhard Schölkopf,et al. Incorporating Invariances in Support Vector Learning Machines , 1996, ICANN.
[27] Bernhard Schölkopf,et al. Comparison of View-Based Object Recognition Algorithms Using Realistic 3D Models , 1996, ICANN.
[28] Juyang Weng,et al. Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..
[29] Tomaso A. Poggio,et al. Image Synthesis from a Single Example Image , 1996, ECCV.
[30] Bernhard Schölkopf,et al. Improving the accuracy and speed of support vector learning machines , 1997, NIPS 1997.
[31] Joachim M. Buhmann,et al. Data clustering and learning , 1998 .
[32] Marti A. Hearst. Trends & Controversies: Support Vector Machines , 1998, IEEE Intell. Syst..
[33] George W. Irwin,et al. RBF principal manifolds for process monitoring , 1999, IEEE Trans. Neural Networks.
[34] Vladimir Vapnik,et al. An overview of statistical learning theory , 1999, IEEE Trans. Neural Networks.
[35] Gunnar Rätsch,et al. Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.
[36] E. Bagarinao,et al. Reconstructing bifurcation diagrams from noisy time series using nonlinear autoregressive models. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[37] Anil K. Jain,et al. Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[38] Andreas Ziehe,et al. Artifact Reduction in Magnetoneurography Based on Time-Delayed Second Order Correlations , 1998 .
[39] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[40] Martin Brown,et al. Linear spectral mixture models and support vector machines for remote sensing , 2000, IEEE Trans. Geosci. Remote. Sens..