Probability Theory on IF Events

Basic constructions of two different theories are presented. The first one is based on the Łukasiewicz connectives, the second on the max - min connectives. In both cases the joint observable is constructed. As an application the central limit theorem is proved.

[1]  B. Riečan ON THE PROBABILITY AND RANDOM VARIABLES ON IF EVENTS , 2006 .

[2]  Beloslav Riecan,et al.  On some contributions to quantum structures by fuzzy sets , 2007, Kybernetika.

[3]  B. Riecan,et al.  Integral, Measure, and Ordering , 1997 .

[4]  Beloslav Riečan,et al.  Representation of Probabilities on IFS Events , 2004 .

[5]  Beloslav Riečan,et al.  Probability on MV algebras , 1997 .

[6]  Alžbeta Michalíková,et al.  Carathéodory outer measure on IF-sets , 2008 .

[7]  Alberto Bugarín,et al.  Soft Methods for Integrated Uncertainty Modelling (Advances in Soft Computing) , 2006 .

[8]  Krassimir T. Atanassov,et al.  Intuitionistic Fuzzy Sets - Theory and Applications , 1999, Studies in Fuzziness and Soft Computing.

[9]  Beloslav Riecan,et al.  On a problem of Radko Mesiar: General form of IF-probabilities , 2006, Fuzzy Sets Syst..

[10]  Jozo J. Dujmovic Asymmetric and Compound Preference Aggregators , 2006, MDAI.

[11]  Przemysław Grzegorzewski,et al.  Probability of Intuitionistic Fuzzy Events , 2002 .

[12]  Beloslav Riecan On the entropy on the Lukasiewicz square , 2005, EUSFLAT Conf..

[13]  Olgierd Hryniewicz,et al.  Soft methods in probability, statistics and data analysis , 2002 .

[14]  Endre Pap,et al.  Handbook of measure theory , 2002 .

[15]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[16]  Beloslav Riecan,et al.  A descriptive definiton of the probability on intuitionistic fuzzy sets , 2003, EUSFLAT Conf..

[17]  Beloslav Riecan,et al.  On Two Ways for the Probability Theory on IF-sets , 2006, SMPS.

[18]  Beloslav Riečan,et al.  On the Law of Large Numbers on IFS Events , 2004, Fuzzy Days.