Hybrid DG/FV schemes for magnetohydrodynamics and relativistic hydrodynamics

Abstract This paper presents a high order hybrid discontinuous Galerkin/finite volume scheme for solving the equations of the magnetohydrodynamics (MHD) and of the relativistic hydrodynamics (SRHD) on quadrilateral meshes. In this approach, for the spatial discretization, an arbitrary high order discontinuous Galerkin spectral element (DG) method is combined with a finite volume (FV) scheme in order to simulate complex flow problems involving strong shocks. Regarding the time discretization, a fourth order strong stability preserving Runge–Kutta method is used. In the proposed hybrid scheme, a shock indicator is computed at the beginning of each Runge–Kutta stage in order to flag those elements containing shock waves or discontinuities. Subsequently, the DG solution in these troubled elements and in the current time step is projected onto a subdomain composed of finite volume subcells. Right after, the DG operator is applied to those unflagged elements, which, in principle, are oscillation-free, meanwhile the troubled elements are evolved with a robust second/third order FV operator. With this approach we are able to numerically simulate very challenging problems in the context of MHD and SRHD in one, and two space dimensions and with very high order polynomials. We make convergence tests and show a comprehensive one- and two dimensional testbench for both equation systems, focusing in problems with strong shocks. The presented hybrid approach shows that numerical schemes of very high order of accuracy are able to simulate these complex flow problems in an efficient and robust manner.

[1]  Paul R. Woodward,et al.  An approximate Riemann solver for ideal magnetohydrodynamics , 1994 .

[2]  J. Flaherty,et al.  Parallel, adaptive finite element methods for conservation laws , 1994 .

[3]  Phillip Colella,et al.  A Higher-Order Godunov Method for Multidimensional Ideal Magnetohydrodynamics , 1994, SIAM J. Sci. Comput..

[4]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[5]  P. Londrillo,et al.  High-Order Upwind Schemes for Multidimensional Magnetohydrodynamics , 1999, astro-ph/9910086.

[6]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[7]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[8]  Equation of State in Numerical Relativistic Hydrodynamics , 2006, astro-ph/0605550.

[9]  The exact solution of the Riemann problem with non-zero tangential velocities in relativistic hydrodynamics , 2000, Journal of Fluid Mechanics.

[10]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[11]  Under consideration for publication in J. Fluid Mech. 1 An Improved Exact Riemann Solver for Multidimensional Relativistic Flows , 2008 .

[12]  R. Blandford,et al.  Fluid dynamics of relativistic blast waves , 1976 .

[13]  E. Müller,et al.  Grid-based Methods in Relativistic Hydrodynamics and Magnetohydrodynamics , 2015, Living reviews in computational astrophysics.

[14]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[15]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[16]  Angelo Marcello Anile,et al.  Relativistic fluids and magneto-fluids , 2005 .

[17]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[18]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[19]  J. Brackbill,et al.  The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .

[20]  Michael Dumbser,et al.  A high order special relativistic hydrodynamic and magnetohydrodynamic code with space-time adaptive mesh refinement , 2013, Comput. Phys. Commun..

[21]  L. Rezzolla,et al.  THC: a new high-order finite-difference high-resolution shock-capturing code for special-relativistic hydrodynamics , 2012, 1206.6502.

[22]  J. Gibbs Fourier's Series , 1898, Nature.

[23]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[24]  Ewald Müller,et al.  Extension of the Piecewise Parabolic Method to One-Dimensional Relativistic Hydrodynamics , 1996 .

[25]  Z. Wang High-order methods for the Euler and Navier–Stokes equations on unstructured grids , 2007 .

[26]  John H. Kolias,et al.  A CONSERVATIVE STAGGERED-GRID CHEBYSHEV MULTIDOMAIN METHOD FOR COMPRESSIBLE FLOWS , 1995 .

[27]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[28]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[29]  Claus-Dieter Munz,et al.  Maxwell's equations when the charge conservation is not satisfied , 1999 .

[30]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[31]  N. Bucciantini,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows , 2002 .

[32]  James M. Stone,et al.  MOCCT: A numerical technique for astrophysical MHD , 1995 .

[33]  K. Powell An Approximate Riemann Solver for Magnetohydrodynamics , 1997 .

[34]  Dongsu Ryu,et al.  Numerical magnetohydrodynamics in astrophysics: Algorithm and tests for multidimensional flow , 1995 .

[35]  Claus-Dieter Munz,et al.  Explicit Discontinuous Galerkin methods for unsteady problems , 2012 .

[36]  Rosa Donat,et al.  A Flux-Split Algorithm applied to Relativistic Flows , 1998 .

[37]  L. Rezzolla,et al.  An improved exact Riemann solver for relativistic hydrodynamics , 2001, Journal of Fluid Mechanics.

[38]  Claus-Dieter Munz,et al.  New Algorithms for Ultra-relativistic Numerical Hydrodynamics , 1993 .

[39]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[40]  Paul R. Woodward,et al.  On the Divergence-free Condition and Conservation Laws in Numerical Simulations for Supersonic Magnetohydrodynamical Flows , 1998 .

[41]  James M. Stone,et al.  A SECOND-ORDER GODUNOV METHOD FOR MULTI-DIMENSIONAL RELATIVISTIC MAGNETOHYDRODYNAMICS , 2011, 1101.3573.

[42]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations , 2009 .

[43]  Jun Zhu,et al.  Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes , 2013, J. Comput. Phys..

[44]  W. F. Noh Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .

[45]  A. Love,et al.  Fourier's Series , 1898, Nature.

[46]  Luciano Rezzolla,et al.  Numerical Relativistic Hydrodynamics: HRSC Methods , 2013 .

[47]  Philip A. Hughes,et al.  Simulations of Relativistic Extragalactic Jets , 1994 .

[48]  Ewald Müller,et al.  The analytical solution of the Riemann problem in relativistic hydrodynamics , 1994, Journal of Fluid Mechanics.

[49]  Paul R. Woodward,et al.  Extension of the Piecewise Parabolic Method to Multidimensional Ideal Magnetohydrodynamics , 1994 .

[50]  Huazhong Tang,et al.  An Adaptive Moving Mesh Method for Two-Dimensional Relativistic Hydrodynamics , 2012 .

[51]  Claus-Dieter Munz,et al.  Shock Capturing for Discontinuous Galerkin Methods using Finite Volume Subcells , 2014 .

[52]  Luciano Rezzolla,et al.  Discontinuous Galerkin methods for general-relativistic hydrodynamics: formulation and application to spherically symmetric spacetimes , 2011, 1103.2426.

[53]  P. Teuben,et al.  Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.

[54]  Lilia Krivodonova,et al.  Limiters for high-order discontinuous Galerkin methods , 2007, J. Comput. Phys..

[55]  A. Harten High Resolution Schemes for Hyperbolic Conservation Laws , 2017 .

[56]  Weiqun Zhang,et al.  RAM: A Relativistic Adaptive Mesh Refinement Hydrodynamics Code , 2005, astro-ph/0505481.

[57]  Guang-Shan Jiang,et al.  A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics , 1999 .

[58]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[59]  Jonathan C. McKinney,et al.  WHAM : a WENO-based general relativistic numerical scheme -I. Hydrodynamics , 2007, 0704.2608.

[60]  Michael Dumbser,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[61]  Manuel Torrilhon,et al.  Uniqueness conditions for Riemann problems of ideal magnetohydrodynamics , 2003 .

[62]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[63]  G. Bodo,et al.  The Piecewise Parabolic Method for Multidimensional Relativistic Fluid Dynamics , 2005, astro-ph/0505200.

[64]  Jonatan Núñez-de la Rosa High-order methods for computational astrophysics , 2015 .

[65]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[66]  A. Ferrari,et al.  PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.

[67]  E. Müller,et al.  Numerical Hydrodynamics in Special Relativity , 1999, Living reviews in relativity.

[68]  Claus-Dieter Munz,et al.  xtroem-fv: a new code for computational astrophysics based on very high order finite-volume methods – II. Relativistic hydro- and magnetohydrodynamics , 2016 .

[69]  Michael Dumbser,et al.  A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes , 2016, J. Comput. Phys..

[70]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[71]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[72]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[73]  W. Schiesser The Numerical Method of Lines: Integration of Partial Differential Equations , 1991 .

[74]  Andrea Mignone,et al.  High-order conservative finite difference GLM-MHD schemes for cell-centered MHD , 2010, J. Comput. Phys..

[75]  B. M. Fulk MATH , 1992 .

[76]  Michael Dumbser,et al.  A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws , 2014, J. Comput. Phys..

[77]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[78]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[79]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[80]  Claus-Dieter Munz,et al.  xtroem-fv: a new code for computational astrophysics based on very high order finite-volume methods – I. Magnetohydrodynamics , 2016 .

[81]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[82]  Andrew G. Glen,et al.  APPL , 2001 .

[83]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[84]  Claus-Dieter Munz,et al.  Efficient Parallelization of a Shock Capturing for Discontinuous Galerkin Methods using Finite Volume Sub-cells , 2017, J. Sci. Comput..

[85]  Antonio Huerta,et al.  One‐dimensional shock‐capturing for high‐order discontinuous Galerkin methods , 2013 .

[86]  Hans De Sterck,et al.  High-order central ENO finite-volume scheme for ideal MHD , 2013 .

[87]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[88]  D. Kopriva A Conservative Staggered-Grid Chebyshev Multidomain Method for Compressible Flows. II. A Semi-Structured Method , 1996 .