Free boundary problems in shock reflection/diffraction and related transonic flow problems

Shock waves are steep wavefronts that are fundamental in nature, especially in high-speed fluid flows. When a shock hits an obstacle, or a flying body meets a shock, shock reflection/diffraction phenomena occur. In this paper, we show how several long-standing shock reflection/diffraction problems can be formulated as free boundary problems, discuss some recent progress in developing mathematical ideas, approaches and techniques for solving these problems, and present some further open problems in this direction. In particular, these shock problems include von Neumann's problem for shock reflection–diffraction by two-dimensional wedges with concave corner, Lighthill's problem for shock diffraction by two-dimensional wedges with convex corner, and Prandtl-Meyer's problem for supersonic flow impinging onto solid wedges, which are also fundamental in the mathematical theory of multidimensional conservation laws.

[1]  James P. Collins,et al.  Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics , 1993, SIAM J. Sci. Comput..

[2]  A. l. Leçons sur la Propagation des Ondes et les Équations de l'Hydrodynamique , 1904, Nature.

[3]  John M. Dewey,et al.  An experimental investigation of the sonic criterion for transition from regular to Mach reflection of weak shock waves , 1989 .

[4]  Xu-Dong Liu,et al.  Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes , 1998, SIAM J. Sci. Comput..

[5]  Gui-Qiang G. Chen,et al.  Stability of Transonic Shock-Fronts in Three-Dimensional Conical Steady Potential Flow past a Perturbed Cone , 2007, 0711.3666.

[6]  Gui-Qiang G. Chen,et al.  Existence and Stability of Supersonic Euler Flows Past Lipschitz Wedges , 2006 .

[7]  Mikhail Feldman,et al.  Transonic Shocks in Multidimensional Divergent Nozzles , 2010, 1003.4335.

[8]  Joseph B. Keller,et al.  Diffraction and reflection of pulses by wedges and corners , 1951 .

[9]  G. M. Lieberman The Perron process applied to oblique derivative problems , 1985 .

[10]  Shuxing Chen,et al.  Mach configuration in pseudo-stationary compressible flow , 2007 .

[11]  Gui-Qiang G. Chen,et al.  Existence and Stability of Multidimensional Transonic Flows through an Infinite Nozzle of Arbitrary Cross-Sections , 2007 .

[12]  Eun Heui Kim,et al.  A free boundary problem for a quasi‐linear degenerate elliptic equation: Regular reflection of weak shocks , 2002 .

[13]  Mikhail Feldman,et al.  Global Solutions of Shock Reflection by Large-Angle Wedges for Potential Flow , 2007, 0708.2540.

[14]  C. Morawetz Potential theory for regular and mach reflection of a shock at a wedge , 1994 .

[15]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[16]  W. Bleakney,et al.  The Mach Reflection of Shock Waves at Nearly Glancing Incidence , 1951 .

[17]  Eitan Tadmor,et al.  Solution of two‐dimensional Riemann problems for gas dynamics without Riemann problem solvers , 2002 .

[18]  Gui-Qiang Chen,et al.  On the 2-D Riemann problem for the compressible Euler equationsI. Interaction of shocks and rarefaction waves , 1995 .

[19]  Mikhail Feldman,et al.  Prandtl-Meyer reflection for supersonic flow past a solid ramp , 2011, 1201.0294.

[20]  M. Lighthill Supersonic Flow and Shock Waves , 1949, Nature.

[21]  M. Lighthill The diffraction of blast. I , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[22]  Mikhail Feldman,et al.  MULTIDIMENSIONAL TRANSONIC SHOCKS AND FREE BOUNDARY PROBLEMS FOR NONLINEAR EQUATIONS OF MIXED TYPE , 2003 .

[23]  Beixiang Fang,et al.  Stability of transonic shocks in supersonic flow past a wedge , 2007 .

[24]  Vanishing Viscosity Method for Transonic Flow , 2006, math/0610249.

[25]  L. F. Henderson,et al.  The von Neumann paradox for the diffraction of weak shock waves , 1990, Journal of Fluid Mechanics.

[26]  D. Kinderlehrer,et al.  Regularity in free boundary problems , 1977 .

[27]  Well-posedness for two-dimensional steady supersonic Euler flows past a Lipschitz wedge , 2006, math/0610309.

[28]  M. V. Dyke,et al.  An Album of Fluid Motion , 1982 .

[29]  Gary M. Lieberman,et al.  Mixed boundary value problems for elliptic and parabolic differential equations of second order , 1986 .

[30]  Mikhail Feldman,et al.  Regularity of solutions to regular shock reflection for potential flow , 2008 .

[31]  E. Harabetian Diffraction of a weak shock by a wedge , 1987 .

[32]  Volker Elling,et al.  Supersonic flow onto a solid wedge , 2007, 0707.2108.

[33]  Gui-Qiang G. Chen Euler Equations and Related Hyperbolic Conservation Laws , 2005 .

[34]  John K. Hunter,et al.  Weak shock diffraction , 1984 .

[35]  L. Prandtl Allgemeine Betrachtungen über die Strömung zusammendrückbarer Flüssigkeiten , 1936 .

[36]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[37]  D. Serre,et al.  Shock Reflection in Gas Dynamics , 2007 .

[38]  Yuxi Zheng,et al.  Systems of Conservation Laws: Two-Dimensional Riemann Problems , 2001 .

[39]  Jun Chen,et al.  Transonic Flows with Shocks Past Curved Wedges for the Full Euler Equations , 2015, 1505.04416.

[40]  L. Bers Mathematical Aspects of Subsonic and Transonic Gas Dynamics , 2016 .

[41]  Existence and Stability of Global Solutions of Shock Diffraction by Wedges for Potential Flow , 2014 .

[42]  D. Serre Von Neumann’s comments about existence and uniqueness for the initial-boundary value problem in gas dynamics , 2009 .

[43]  M. Lighthill The diffraction of blast. II , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[44]  Cathleen S. Morawetz,et al.  MIXED EQUATIONS AND TRANSONIC FLOW , 2004 .

[45]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[46]  James Glimm,et al.  Multidimensional hyperbolic problems and computations , 1991 .

[47]  L Howarth,et al.  Mathematical Aspects of Subsonic and Transonic Gas Dynamics , 1959 .

[48]  Z. Xin,et al.  Transonic Shocks for the Full Compressible Euler System in a General Two-Dimensional De Laval Nozzle , 2013 .

[49]  Gabi Ben-Dor,et al.  Shock wave reflection phenomena , 1992 .