A Hybrid Monte Carlo Method for Simulation of Quantum Transport
暂无分享,去创建一个
[1] S. Selberherr,et al. Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices , 2004 .
[2] H. Niederreiter. 1. Monte Carlo Methods and Quasi-Monte Carlo Methods , 1992 .
[3] Emanouil I. Atanassov. A New Efficient Algorithm for Generating the Scrambled Sobol' Sequence , 2002, Numerical Methods and Application.
[4] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[5] Dragica Vasileska,et al. Femtosecond Evolution of Spatially Inhomogeneous Carrier Excitations Part I: Kinetic Approach , 2005, LSSC.
[6] Paula A. Whitlock,et al. An efficient backward Monte Carlo estimator for solving of a quantum-kinetic equation with memory kernel , 2002, Math. Comput. Simul..
[7] Ivan Tomov Dimov,et al. A Parallel Monte Carlo Method for Electron Quantum Kinetic Equation , 2003, LSSC.
[8] G. Marchuk,et al. Numerical methods and applications , 1995 .
[9] Tilmann Kuhn,et al. Electron-phonon quantum kinetics for spatially inhomogeneous excitations , 2003 .
[10] Michael Mascagni. SPRNG: A Scalable Library for Pseudorandom Number Generation , 1999, PPSC.
[11] P. Deuflhard,et al. Large Scale Scientific Computing , 1987 .
[12] I. B. Levinson. Translational Invariance in Uniform Fields and the Equation for the Density Matrix in the Wigner Representation , 1969 .
[13] G. Faini,et al. Field dependence of magnetization reversal by spin transfer , 2003 .