Raman photogalvanic effect: Photocurrent at inelastic light scattering

We show theoretically that electromagnetic waves propagating in the transparency region of a non-centrosymmetric medium can induce a dc electric current. The origin of the effect is the Raman scattering of light by free carriers in the system. Due to the photon scattering, electrons undergo real quantum transitions resulting in the formation of their anisotropic momentum distribution and in shifts of electronic wavepackets giving rise to a steady state photocurrent. We present microscopic theory of the Raman Photogalvanic effect (RPGE) focusing on two specific situations: (i) generic case of a bulk gyrotropic semiconductor and (ii) a quantum well structure where the light is scattered by intersubband excitations. We uncover the relation of the predicted RPGE and the traditional photogalvanic effect at the light absorption.

[1]  Justin C. W. Song,et al.  Berry-dipole photovoltaic demon and the thermodynamics of photocurrent generation within the optical gap of metals , 2022, Physical Review B.

[2]  L. Golub,et al.  Nonlinear optical absorption and photocurrents in topological insulators , 2021, Physical Review B.

[3]  B. Sturman,et al.  The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials , 2021 .

[4]  J. Orenstein,et al.  Topology and Symmetry of Quantum Materials via Nonlinear Optical Responses , 2021 .

[5]  V. Fal’ko,et al.  Edge photocurrent in bilayer graphene due to inter-Landau-level transitions , 2020, Physical Review B.

[6]  C. Felser,et al.  Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi , 2020, Science Advances.

[7]  E. Ivchenko,et al.  Semiclassical theory of the circular photogalvanic effect in gyrotropic systems , 2020, 2006.11323.

[8]  B. Sturman,et al.  Ballistic and shift currents in the bulk photovoltaic effect theory , 2019, Physics-Uspekhi.

[9]  M. Durnev,et al.  High‐Frequency Nonlinear Transport and Photogalvanic Effects in 2D Topological Insulators , 2019, Annalen der Physik.

[10]  J. You,et al.  Symmetry regimes for circular photocurrents in monolayer MoSe2 , 2018, Nature Communications.

[11]  E. Ivchenko,et al.  Circular and magnetoinduced photocurrents in Weyl semimetals , 2018, Physical Review B.

[12]  P. Jarillo-Herrero,et al.  Direct optical detection of Weyl fermion chirality in a topological semimetal , 2017, Nature Physics.

[13]  Eric O Potma,et al.  Stimulated Raman Scattering: From Bulk to Nano. , 2017, Chemical reviews.

[14]  T. Morimoto,et al.  Quantized circular photogalvanic effect in Weyl semimetals , 2016, Nature Communications.

[15]  L. E. Golub,et al.  Photon drag effect in (Bi1−xSbx)2Te3 three-dimensional topological insulators , 2015, 1512.07078.

[16]  T. Morimoto,et al.  Topological aspects of nonlinear excitonic processes in noncentrosymmetric crystals , 2015, 1512.00549.

[17]  L. Golub,et al.  Interplay of Rashba/Dresselhaus spin splittings probed by photogalvanic spectroscopy –A review , 2014 .

[18]  J Kampmeier,et al.  Room-temperature high-frequency transport of dirac fermions in epitaxially grown Sb2Te3- and Bi2Te3-based topological insulators. , 2014, Physical review letters.

[19]  S. D. Ganichev,et al.  High frequency electric field induced nonlinear effects in graphene , 2013, 1306.2049.

[20]  P. Ajayan,et al.  Magnetic quantum ratchet effect in graphene. , 2013, Nature nanotechnology.

[21]  P. Jarillo-Herrero,et al.  Control over topological insulator photocurrents with light polarization. , 2011, Nature nanotechnology.

[22]  L. Golub,et al.  Shift photocurrent induced by two-quantum transitions , 2011 .

[23]  V. V. Bel'kov,et al.  Circular photogalvanic effect in HgTe/CdHgTe quantum well structures , 2010, 1002.2528.

[24]  J. E. Moore,et al.  Confinement-induced berry phase and helicity-dependent photocurrents. , 2009, Physical review letters.

[25]  V. Shalygin,et al.  Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures , 2008, 0810.1205.

[26]  J. Kiermaier,et al.  All-electric detection of the polarization state of terahertz laser radiation , 2007, 0709.4589.

[27]  E. Ivchenko Optical Spectroscopy of Semiconductor Nanostructures , 2005 .

[28]  Sergey Ganichev,et al.  Spin photocurrents in quantum wells , 2003 .

[29]  E. Ivchenko,et al.  Photogalvanic effects in quantum wells , 2002 .

[30]  E. Ivchenko,et al.  Conversion of spin into directed electric current in quantum wells. , 2001, Physical review letters.

[31]  G. E. Pikus,et al.  Observation of a photo-emf that depends on the sign of the circular polarization of the light , 1978 .

[32]  E. Ivchenko,et al.  New photogalvanic effect in gyrotropic crystals , 1978 .

[33]  V. Belinicher Space-oscillating photocurrent in crystals without symmetry center , 1978 .

[34]  Alastair M. Glass,et al.  High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 , 1974 .

[35]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[36]  E. Rashba,et al.  Symmetry of Energy Bands in Crystals of Wurtzite Type II. Symmetry of Bands with Spin-Orbit Interaction Included , 2015 .