Distance Spectrum of Fixed-Rate Raptor Codes With Linear Random Precoders

Raptor code ensembles with linear random outer codes in a fixed-rate setting are considered. An expression for the average distance spectrum is derived and this expression is used to obtain the asymptotic exponent of the weight distribution. The asymptotic growth rate analysis is then exploited to develop a necessary and sufficient condition under which the fixed-rate Raptor code ensemble exhibits a strictly positive typical minimum distance. The condition involves the rate of the outer code, the rate of the inner fixed-rate Luby Transform (LT) code and the LT code degree distribution. Additionally, it is shown that for ensembles fulfilling this condition, the minimum distance of a code randomly drawn from the ensemble has a linear growth with the block length. The analytical results can be used to make accurate predictions of the performance of finite length Raptor codes. These results are particularly useful for fixed-rate Raptor codes under maximum likelihood erasure decoding, whose performance is driven by their weight distribution.

[1]  라센소렌,et al.  Multi-stage code generator and decoder for communication systems , 2002 .

[2]  Peng Wang,et al.  Network Coding Based Wireless Broadcast With Performance Guarantee , 2015, IEEE Transactions on Wireless Communications.

[3]  Gerhard Bauch,et al.  Enhancing the LT Component of Raptor Codes for Inactivation Decoding , 2015 .

[4]  David Burshtein,et al.  Efficient maximum-likelihood decoding of LDPC codes over the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[5]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[6]  Michael Luby,et al.  A digital fountain approach to reliable distribution of bulk data , 1998, SIGCOMM '98.

[7]  Weifa Liang,et al.  Performance Analysis of Raptor Codes Under Maximum Likelihood Decoding , 2015, IEEE Transactions on Communications.

[8]  Alexander Barg,et al.  Concatenated codes with fixed inner code and random outer code , 2001, IEEE Trans. Inf. Theory.

[9]  Richard D. Wesel,et al.  Protograph-Based Raptor-Like LDPC Codes , 2014, IEEE Transactions on Communications.

[10]  Amin Shokrollahi,et al.  Capacity-achieving sequences for the erasure channel , 2002, IEEE Trans. Inf. Theory.

[11]  P. Maymounkov Online codes , 2002 .

[12]  Gerhard Bauch,et al.  On the weight distribution of fixed-rate Raptor codes , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[13]  John J. Metzner,et al.  An Improved Broadcast Retransmission Protocol , 1984, IEEE Trans. Commun..

[14]  Digital Video Broadcasting (dvb); Upper Layer Fec for Dvb Systems , .

[15]  Peter Vary,et al.  The Performance of Short Random Linear Fountain Codes under Maximum Likelihood Decoding , 2011, 2011 IEEE International Conference on Communications (ICC).

[16]  Daniel A. Spielman,et al.  Practical loss-resilient codes , 1997, STOC '97.

[17]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[18]  Michael Mitzenmacher,et al.  A digital fountain approach to asynchronous reliable multicast , 2002, IEEE J. Sel. Areas Commun..

[19]  Thomas Stockhammer,et al.  Raptor Forward Error Correction Scheme for Object Delivery , 2007, RFC.

[20]  Marco Chiani,et al.  Maximum Likelihood Erasure Decoding of LDPC Codes: Pivoting Algorithms and Code Design , 2012, IEEE Transactions on Communications.

[21]  Gerhard Bauch,et al.  LT code design for inactivation decoding , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[22]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[23]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[24]  Masoud Ardakani,et al.  On Raptor Code Design for Inactivation Decoding , 2012, IEEE Transactions on Communications.

[25]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[26]  Birgit Schotsch,et al.  Rateless coding in the finite length regime , 2014 .

[27]  Alon Orlitsky,et al.  Stopping set distribution of LDPC code ensembles , 2003, IEEE Transactions on Information Theory.

[28]  Nazanin Rahnavard,et al.  Rateless Codes With Unequal Error Protection Property , 2007, IEEE Transactions on Information Theory.

[29]  Rüdiger L. Urbanke,et al.  Weight Distribution of Low-Density Parity-Check Codes , 2006, IEEE Transactions on Information Theory.

[30]  Yuhong Yang Elements of Information Theory (2nd ed.). Thomas M. Cover and Joy A. Thomas , 2008 .