Higher Dimensional Algebra: I. Braided Monoidal 2-Categories

Abstract We begin with a brief sketch of what is known and conjectured concerning braided monoidal 2-categories and their relevance to 4d TQFTs and 2-tangles. Then we give concise definitions of semistrict monoidal 2-categories and braided monoidal 2-categories and show how these may be unpacked to give long explicit definitions similar to, but not quite the same as, those given by previously Kapranov and Voevodsky. Finally, we describe how to construct a semistrict braided monoidal 2-category Z ( C ) as the “center” of a semistrict monoidal category C , in a manner analogous to the construction of a braided monoidal category as the center of a monoidal category. As a corollary this yields a strictification theorem for braided monoidal 2-categories.

[1]  K.-H. Ulbrich,et al.  On hopf algebras and rigid monoidal categories , 1990 .

[2]  L. Breen On the classification of 2-gerbes and 2-stacks , 1994 .

[3]  P. T. Johnstone,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY (London Mathematical Society Lecture Note Series, 64) , 1983 .

[4]  M. Kapranov,et al.  Braided monoidal 2-categories and Manin-Schechtman higher braid groups , 1994 .

[5]  V. Turaev,et al.  Ribbon graphs and their invaraints derived from quantum groups , 1990 .

[6]  L. Crane 2-d physics and 3-d topology , 1991 .

[7]  J. Baez,et al.  Higher dimensional algebra and topological quantum field theory , 1995, q-alg/9503002.

[8]  D. Freed,et al.  Chern-Simons theory with finite gauge group , 1991, hep-th/9111004.

[9]  Vladimir Turaev,et al.  Invariants of 3-manifolds via link polynomials and quantum groups , 1991 .

[10]  Ross Street,et al.  The algebra of oriented simplexes , 1987 .

[11]  Vladimir Voevodsky,et al.  2-Categories and Zamolodchikov tetrahedra equations , 1994 .

[12]  J. Fischer $2$-categories and $2$-knots , 1994 .

[13]  Four‐dimensional topological quantum field theory, Hopf categories, and the canonical bases , 1994, hep-th/9405183.

[14]  V. Turaev,et al.  On the Definition of $2$-Category of $2$-Knots , 1993 .

[15]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[16]  J. Benabou Introduction to bicategories , 1967 .

[17]  V. Turaev OPERATOR INVARIANTS OF TANGLES, AND R-MATRICES , 1990 .

[18]  E. Witten,et al.  Topological gauge theories and group cohomology , 1990 .

[19]  D. Yetter Categorical Linear Algebra — A Setting for Questions from Physics and Low-Dimensional Topology , 2022 .

[20]  ON ALGEBRAIC STRUCTURES IMPLICIT IN TOPOLOGICAL QUANTUM FIELD THEORIES , 1994, hep-th/9412025.

[21]  S. Majid Foundations of Quantum Group Theory , 1995 .

[22]  Ross Street,et al.  Coherence of tricategories , 1995 .

[23]  Daniel S. Freed,et al.  Higher algebraic structures and quantization , 1992, hep-th/9212115.

[24]  John W. Gray,et al.  Formal category theory: adjointness for 2-categories , 1974 .

[25]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[26]  R. Street,et al.  Review of the elements of 2-categories , 1974 .

[27]  A. Joyal,et al.  Tortile Yang-Baxter operators in tensor categories , 1991 .