The incorporation of water-soluble gel matrix into bile acid-based microcapsules for the delivery of viable β-cells of the pancreas, in diabetes treatment: biocompatibility and functionality studies

[1]  F. Arfuso,et al.  Advanced bile acid-based multi-compartmental microencapsulated pancreatic β-cells integrating a polyelectrolyte-bile acid formulation, for diabetes treatment , 2016, Artificial cells, nanomedicine, and biotechnology.

[2]  F. Arfuso,et al.  Characterization of a novel bile acid-based delivery platform for microencapsulated pancreatic β-cells , 2016, Artificial cells, nanomedicine, and biotechnology.

[3]  H. Al‐Salami,et al.  An advanced microencapsulated system: a platform for optimized oral delivery of antidiabetic drug-bile acid formulations , 2015, Pharmaceutical development and technology.

[4]  F. Arfuso,et al.  Novel chenodeoxycholic acid–sodium alginate matrix in the microencapsulation of the potential antidiabetic drug, probucol. An in vitro study , 2015, Journal of microencapsulation.

[5]  G. Watts,et al.  An optimized probucol microencapsulated formulation integrating a secondary bile acid (deoxycholic acid) as a permeation enhancer , 2014, Drug design, development and therapy.

[6]  Hesham S. Al-Sallami,et al.  Microencapsulation as a novel delivery method for the potential antidiabetic drug, Probucol , 2014, Drug design, development and therapy.

[7]  Hesham S. Al-Sallami,et al.  Novel artificial cell microencapsulation of a complex gliclazide-deoxycholic bile acid formulation: a characterization study , 2014, Drug design, development and therapy.

[8]  R. Calafiore,et al.  Clinical application of microencapsulated islets: actual prospectives on progress and challenges. , 2014, Advanced drug delivery reviews.

[9]  P. de Vos,et al.  Polymers in cell encapsulation from an enveloped cell perspective. , 2014, Advanced drug delivery reviews.

[10]  H. Al‐Salami,et al.  Potentials and Limitations of Bile Acids in Type 2 Diabetes Mellitus: Applications of Microencapsulation as a Novel Oral Delivery System , 2013 .

[11]  M. Mikov,et al.  The bile acid membrane receptor TGR5: a novel pharmacological target in metabolic, inflammatory and neoplastic disorders , 2013, Journal of receptor and signal transduction research.

[12]  G. Weir Islet encapsulation: advances and obstacles , 2013, Diabetologia.

[13]  C. Ricordi,et al.  Islet Cell Therapy and Pancreatic Stem Cells , 2011 .

[14]  M. Brand,et al.  Assessing mitochondrial dysfunction in cells , 2011, The Biochemical journal.

[15]  Eleazar Chaib,et al.  Islet transplantation in rodents. Do encapsulated islets really work? , 2011, Arquivos de gastroenterologia.

[16]  L. Yahia,et al.  Biocompatibility and physicochemical characteristics of alginate-polycation microcapsules. , 2011, Acta biomaterialia.

[17]  B. Ranjbar,et al.  Differential scanning calorimetry techniques: applications in biology and nanoscience. , 2010, Journal of biomolecular techniques : JBT.

[18]  H. Ellingsgaard,et al.  Islet inflammation impairs the pancreatic beta-cell in type 2 diabetes. , 2009, Physiology.

[19]  O. Briz,et al.  Bile-acid-induced cell injury and protection. , 2009, World journal of gastroenterology.

[20]  C. Ricordi,et al.  Minimization and withdrawal of steroids in pancreas and islet transplantation , 2009, Transplant international : official journal of the European Society for Organ Transplantation.

[21]  Jonathan Beck,et al.  Islet encapsulation: strategies to enhance islet cell functions. , 2007, Tissue engineering.

[22]  P. de Vos,et al.  Alginate-based microcapsules for immunoisolation of pancreatic islets. , 2006, Biomaterials.

[23]  L. Yahia,et al.  Physicochemical model of alginate-poly-L-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS, and ToF-SIMS. , 2005, Biomaterials.

[24]  E. Opara,et al.  Characteristics of Poly-L-Ornithine-coated alginate microcapsules. , 2005, Biomaterials.

[25]  Susan C. Roberts,et al.  Polyelectrolytes for cell encapsulation , 2005 .

[26]  T. Chang,et al.  Therapeutic applications of polymeric artificial cells , 2005, Nature Reviews Drug Discovery.

[27]  G. Freddi,et al.  Preparation of silk fibroin and polyallylamine composites , 2002 .

[28]  M. Sefton,et al.  Colorimetric assay for cellular activity in microcapsules. , 1990, Biomaterials.

[29]  T. Chang,et al.  Semipermeable aqueous microcapsules. IV. Nonthrombogenic microcapsules with heparin-complexed membranes. , 1967, Canadian journal of physiology and pharmacology.

[30]  C. Ricordi,et al.  Chapter 70 – Islet Cell Therapy and Pancreatic Stem Cells , 2013 .

[31]  Anthony Atala,et al.  Cell microencapsulation. , 2010, Advances in experimental medicine and biology.

[32]  Min Wu,et al.  Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. , 2007, American journal of physiology. Cell physiology.

[33]  C. Lutton,et al.  Rationalization of the relative hydrophobicity of some common bile acids by infrared and Raman spectroscopy , 1997 .

[34]  K. Hamaguchi,et al.  NIT-1, a pancreatic beta-cell line established from a transgenic NOD/Lt mouse. , 1991, Diabetes.